
Experience Report: Thinkathon - Countering an "I Got It
Working" Mentality with Pencil-And-Paper Exercises
Quintin Cutts

quintin.cutts@glasgow.ac.uk
University of Glasgow

Matthew Barr
matthew.barr@glasgow.ac.uk

University of Glasgow

Mireilla Bikanga Ada
mireilla.bikangaada@glasgow.ac.uk

University of Glasgow

Peter Donaldson
peter.donaldson.2@glasgow.ac.uk

University of Glasgow

Steve Draper
steve.draper@glasgow.ac.uk

University of Glasgow

Jack Parkinson
jack.parkinson@glasgow.ac.uk

University of Glasgow

Jeremy Singer
jeremy.singer@glasgow.ac.uk

University of Glasgow

Lovisa Sundin
lovisa.sundin@glasgow.ac.uk

University of Glasgow

ABSTRACT
Goal-directed problem-solving labs can lead a student to believe
that the most important achievement in a first programming course
is to get programs working. This is counter to research indicating
that code comprehension is an important developmental step for
novice programmers. We observed this in our own CS-0 introduc-
tory programming course, and furthermore, that students weren’t
making the connection between code comprehension in labs and a
final examination that required solutions to pencil-and-paper com-
prehension and writing exercises, where sound understanding of
programming concepts is essential. Realising these deficiencies late
in our course, we put on three 3-hour optional revision evenings
just days before the exam. Based on a mastery learning philoso-
phy, students were expected to work through a bank of around 200
pencil-and-paper exercises. By comparison with a machine-based
hackathon, we called this a Thinkathon. Students completed a pre
and post questionnaire about their experience of the Thinkathon.
While we find that Thinkathon attendance positively influences
final grades, we believe our reflection on the overall experience is
of greater value. We report that: respected methods for develop-
ing code comprehension may not be enough on their own; novices
must exercise their developing skills away frommachines; and there
are social learning outcomes in programming courses, currently
implicit, that we should make explicit.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Computational thinking; Student assessment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319785

KEYWORDS
mastery learning, introductory programming, program comprehen-
sion, goal-directed problem solving

ACM Reference Format:
Quintin Cutts, Matthew Barr, Mireilla Bikanga Ada, Peter Donaldson, Steve
Draper, Jack Parkinson, Jeremy Singer, and Lovisa Sundin. 2019. Experience
Report: Thinkathon - Countering an "I Got It Working" Mentality with
Pencil-And-Paper Exercises. In Innovation and Technology in Computer
Science Education (ITiCSE ’19), July 15–17, 2019, Aberdeen, Scotland UK.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3304221.3319785

1 INTRODUCTION
In a meeting of our CS-0 programming course team, around four-
fifths of the way through the semester, we were discussing a wide
range of misconceptions evident among the students. The common
thread across all the comments was the students’ conviction that
getting the program working was the most important consideration.
Understanding either the process they’d gone through to get the
program working, or the programming language constructs and
patterns they’d used, was of secondary value, if any. This might not
have been important if the students were going to be assessed in a
lab with the support system of teaching assistants (TAs), friends
and the internet all around. Instead, in just four weeks, they would
face a written programming exam requiring good conceptual under-
standing for both code comprehension and code writing questions
with nothing more than their brain and a pen in their hand.

We considered remediation. How could we enable weaker stu-
dents to attempt enough exam-like questions in exam-like circum-
stances to give them a hope of succeeding in the final examination;
in essence, to give them a flavour of Mastery Learning [2]? We
discounted added traditional exercises in the last two weeks’ class
sessions due to insufficient preparation time for the course team.
Someone suggested an all-night crash session for students “like a
hackathon”, with another team member extending this idea with
“but for these kinds of exercises, surely it’s a Think-athon” – and so
a new concept was born. Over the next three weeks, we constructed
over 200 paper-based exercises and just a few days before the exam,
ran three evening Thinkathon sessions for our students.

Session 3C: CS1 ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

203

https://doi.org/10.1145/3304221.3319785
https://doi.org/10.1145/3304221.3319785
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3304221.3319785&domain=pdf&date_stamp=2019-07-02

This paper is fully an experience report. We had a course that
we thought was rather well designed; as we reflected on our stu-
dents’ learning journey, we realised that they were insufficiently
prepared for the terminal exam and so designed a remediation, the
Thinkathon; as we reflected on student and staff evaluations of the
Thinkathon combined with student exam performance, we devel-
oped new insights into the incorporation of code comprehension
within a programming course. In particular, we find that:

• respected methods for developing code comprehension may
not be enough on their own;

• students and staff who experienced the Thinkathon now
recognise how important it is for novices to think and work
away from machines;

• there are a number of social intended learning outcomes on
a programming course which the instructor should incorpo-
rate and broadcast to students.

The next two sections introduce the overall course design and
that of the Thinkathon respectively, making reference to the litera-
ture supporting the design choices as necessary. Section 4 outlines
the evaluation methodology, with the following two sections de-
tailing the quantitative and qualitative results of the evaluation.
Section 7 discusses the whole experience, drawing out our learning,
and Section 8 concludes with next steps.

2 COURSE DESIGN
To provide context, our course is now described; one aim in doing
this is to show that the development of code comprehension and
conceptual understanding was not ignored in the course design.
Our course, a CS-0 introductory programming course, runs over
11 weeks, with two 2-hour large class sessions and one 2-hour
lab session each week. The large class sessions are based on Peer
Instruction (PI) [15, 27], requiring students to complete reading and
on-line tasks prior to every class, take a short quiz on that work at
the start of the class, and then answer/discuss PI questions for the
rest of the class.

The course design incorporates a strong code comprehension el-
ement, in line with a number of researchers’ recommendations: pre-
class activities encourage students to practice their code-reading
ability [18]; PI questions foster understanding and analysis of pro-
grams at a range of levels of detail [4, 24]; the concept of the notional
machine is introduced to learners during class, and they are shown
how the activities they have been undertaking should help to de-
velop their own notional machine understanding [6, 7, 29]; labs
encourage the development of a number of smaller programs rather
than just one large one [10]; some lab sessions encourage students
to explore complete programs and draw out re-usable patterns [19];
the staff-student ratio in the labs is high to provide sufficient time
for students to talk to staff about their programs, displaying their
understanding. These discussions are intended to emphasise the
importance of understanding over simply getting programs work-
ing. TAs are expected to quiz the students about their programs,
for example, pointing at a piece of code and asking the student to
explain how it works and why they used it, and award an advisory
progress grade depending on the students’ responses.

In line with other courses [9, 26], this course introduces students
to two languages: for the first 5 weeks, students learn a block-
based language, in this case Alice; for the remaining 6 weeks, they
learn Python. To give a sense of the scope of the course, the most
complicated problems explored will require reading in data from a
text file, storing it in a data structure requiring some combination
of lists and dictionaries, processing the data structure in some way
usually according to user input, and finally writing results either
to screen or back into a file.

While the course does have a practical assessment for credit, the
primary assessment is a written final examination. The questions
in this exam require students to display both code comprehension
and code writing skills, with no access to notes or a machine. The
course designers believe that the questions are simple enough that
a competent hard-working student should be able to internalise the
programming concepts, syntax and patterns during the course, and
therefore should not require recourse to external aids. The exam
contains the following four question types:

• Evaluation of expressions involving simple types and lists
and dictionaries

• Hand/desk execution
• Identifying and correcting errors in code, given a problem
statement

• Problem-solving: given a problem statement, write a solution
in programming language code

3 THINKATHON DESIGN
The Thinkathon idea was born from the realisation that students
were not developing sound conceptual understanding, and we
aimed to provide an extended immersive experience - not unlike a
"boot camp" [30] - to correct this. The Thinkathon design was itera-
tive, involving discussion among our 17-strong CS education group,
including PhD students and academic staff, mainly CS but with
some members from other schools, with widely varying breadths
of experience. Our overall goals were to:

• enable the students to succeed in the upcoming exam and
be well-prepared for follow-on programming courses;

• help them to develop appropriate attitudes and approaches to
learning programming, for example, to have the confidence
to know whether or not they’ve correctly solved a problem,
tackled a bug, or written a fragment of code.

The issues with the students’ learning that arose in our discussions
and that we were aiming to address were perceived to be as follows:

• The operation of programming language constructs is not
well-enough understood by students, as evidenced by the
poor quality of discussions between TAs and students in labs.
The use of PI in CS is typically expected to address this [27],
but we are not the only ones to find that PI does not ensure all
students succeed [12]. We suspect that while the preparation
and discussion aspects of PI do ensure students understand
concepts in the moment, there is not enough repetition for
these understandings to become permanent.

• The number of larger problems/tasks and solutions devel-
oped or studied by students is not enough. PI cannot easily
handle this issue, as PI questions typically deal with small
code fragments. This results in the students not developing

Session 3C: CS1 ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

204

a sufficiently advanced pattern memory, without which they
are unable to quickly break down a new problem into known
chunks with known solutions.

• The students are too dependent on outside sources of help,
preventing them from developing their own understanding
and confidence. For example, the programming environment
is used as a crutch to tell them whether what they’ve devel-
oped is correct; the internet can be used to find fragments
of code to solve problems, a practice rarely appropriate in
an introductory programming lab, unless the student knows
that he/she has to thoroughly understand such fragments;
and, help from friends or TAs may simply solve a student’s
programming problem, rather than helping them learn how
to solve their own problem, a more useful long-term goal.

Our task was to develop exercises for the students to tackle on the
Thinkathon evenings, completion of which would help to meet the
goals and address the issues identified above. We came up with five
objectives for the Thinkathon exercises:

• All the exercises should be paper-based to break the depen-
dence on a machine. Such "unplugged" computing activi-
ties [1] are generally deployed for younger learners and not
at university level.

• There should be sufficient exercises of every type, along with
model solutions, to support Mastery Learning, identified as
an under-used but highly desirable learning practice for
programming education in [14, 25]. Under such a practice, a
student should be able to find out if their solution attempt is
correct; if it is not, to work out why, and then to try again on
another similar exercise; if it is correct, and the student has
now completed a number of similar exercises correctly, then
they can move on to exercises at the next level of difficulty.

• Students should be able to work at their own pace, essential
for independent learning and in a subject where students
are at so many different levels.

• Students should not get stuck often. This requires the exer-
cises to follow a developmental sequence, where each incre-
mental step is small. The development of such sequences is
not regarded to be straight-forward in CS [21].

• Students should be able to gain assistance from other stu-
dents, but not to be dependent on it. A student’s peers are a
strong support mechanism, and it is important to develop
those connections, but also to make sure that students are
aware of more and less constructive ways of supporting their
peers.

We struggled with the complexity of large numbers of each type
of exercise for Mastery Learning, combined with the two dimen-
sions associated with developing a developmental sequence. First,
there is a progression from code comprehension to code writing
– e.g. it is easier to trace code than it is to write from scratch [13];
second there is a progression through examples that make use of
steadily more complex, and more complex combinations of, pro-
gramming language constructs and programming patterns.

We judged there to be no perfect progression that we could
readily develop, and so made a compromise. We created 5 packs
of exercises, sequenced on the comprehension/writing dimension,
containing several kinds of exercises, which largely match the style

of exam questions for the course. The exercise styles, described
with reference to what aspect of Schulte’s Block Model for code
comprehension [24] must be understood to complete them, are:

(1) Describing, evaluating and creating expressions and simple
statements – an extension of our exam practice to ensure
that students thoroughly understand primitives. Structure
section of the Block Model, at the Atom level only.

(2) Hand/desk execution. Block Model’s complete Structure sec-
tion.

(3) Parsons Puzzles [20]. These code rearrangement exercises
represent a developmental stepping-stone from code reading
to writing. All parts of the Block Model, both Structure and
Function.

(4) Validating/debugging code. These exercises have the prob-
lem statement and some incorrect code, and the instruction
to find and fix the errors. All parts of the Block Model.

(5) Problem-solving from scratch

Broadly, the exercises in each pack were ordered to follow a
typical sequence for introducing programming language concepts
and patterns. Novice programmers value exposure to example pro-
grams [22]. Our packs provided sequences of such programs in a
scaffolded setting. ‘Learning by doing’ is considered by novices to be
effective; they report exercises to be more useful than lectures [11].
Here, students started with code completion activities [17], moving
through the recognition of plans and patterns [28] and finishing
with coding ex nihilo problems [16].

Students were alerted via email and lecture to the Thinkathon ses-
sions, which occurred immediately prior to exams. The sessions ran
from 4-7pm, with pizza and soft drinks provided half-way through,
initially on two consecutive evenings. The students encouraged us
to run a third session. At each session, around 8 TAs/instructors
were on hand to check student work and answer queries. The packs
were only available on paper. Students were directed to use the
materials as follows: start at the first exercise pack; dip in at any
point; if the questions seemed easy, jump ahead, if hard, then drop
back; once the exercises are complete, take them to a TA to be
checked, and if they’re correct, move on to the next pack.

In the interests of fairness, all the exercises and their answers
were uploaded to the course VLE (Moodle) after the third session.
This enabled access to those students who didn’t attend, citing
pressure of revision for exams scheduled earlier than the CS exam,
and students who hadn’t completed all packs by the end of the
three sessions.

The materials can be found at: http://ccse.ac.uk/thinkathon.

4 EVALUATION METHODOLOGY
As part of the Thinkathon, we developed and implemented an eval-
uation to establish whether students’ academic performance im-
proved after the introduction of the new practice, and to determine
student and staff views.

The intervention, which sought to deepen the understanding
of programming among learners in line with code comprehen-
sion ideals and to explore the impact of a change in practice, used
action research as a means of enquiry. Action research involves
“practitioners studying their own professional practice and framing

Session 3C: CS1 ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

205

http://ccse.ac.uk/thinkathon

their own questions. This style of research has the immediate goal
to assess, develop or improve practice” [31].

We were interested in the following questions:

(1) What are the students’ perceptions of the Thinkathon exer-
cises?

(2) Is there a difference in performance in the final exam be-
tween Thinkathon participants and those who did not attend,
possibly taking into consideration mid-term exam perfor-
mance.

(3) Do those who attended the Thinkathon perform better than
those who only accessed the questions and answers online.

(4) Does the Thinkathon highlight deficiencies in the current
course design and if so how?

The qualitative evaluation was designed to address the first and
fourth questions, with the quantitative evaluation addressing the
second and third.

The study participants were students enrolled in our CS-0 course.
There was a total of 114 students. However, only 108 took the
final exam. Ethical approval was obtained before the study. To
compare the group who attended the Thinkathon to those who
did not participate, the study used their mid-term and final exam
scores. To analyse student perception of the Thinkathon exercises,
a survey was sent to students before and after they had attended
the Thinkathon. Finally, a round-table meeting of all staff involved
in the Thinkathon was held where we collected staff viewpoints,
sometimes recording verbatim quotes and sometimes a summary
of particular views.

Descriptive and statistical analyses of means and standard devia-
tion were calculated to provide quantitative results. A comparative
examination of participants’ confidence level before and after the
Thinkathon was also performed. Qualitative data from student
Thinkathon participants was collected using four open-ended ques-
tions in the post-test survey.

• Reflecting on the Thinkathon exercises, what programming
concepts or types of problem did you initially find difficult?

• In what ways do you feel the Thinkathon sessions helped
you better understand these concepts or problem types?

• What else - not covered above -was good about the Thinkathon
session(s) you attended? What other realisations or learning
or gains about programming have you made as a result of
attending?

• What could we have done better at the Thinkathon session(s)
you attended?

In the initial coding pass, an inductive analysis of individual student
responses to survey questions was carried out independently by
two of the paper’s authors. However, during comparison and discus-
sion of these initial results it became apparent that a simultaneous
coding approach [23] using a hierarchical coding scheme [23] that
grouped all responses by student would be more appropriate; the
same issue could appear across several of their answers, with dis-
tinct aspects of interest like the instructional design and their own
level of understanding blended together. This was supplemented
by a simpler inductive descriptive coding [23] of a summary of the
Thinkathon staff debriefing meeting.

Figure 1: Final exam scores as boxplot

5 QUANTITATIVE RESULTS
For an understanding into the Thinkathon’s effect on the students’
Python skills, attendees’ survey data was analysed in combination
with their final exam performance.

Out of the 108 students who took the final exam, 37 took the
pre-test survey, and 34 took the post-test survey. From the union of
these responses, it can be estimated that 44 students participated
in the Thinkathon event while 64 didn’t.

First, we looked intowhether there was a group difference among
attendees and non-attendees for the first two Python exam ques-
tions, since they were concerned with the first set of Thinkathon
exercises, which attendees were most likely to have completed,
namely hand execution. Descriptive statistics indicated no such
differentiating ability. The full set of Python questions did, however,
reveal that attendees on average scored higher (see the Figure 1).
Attendees had a mean of 23.42 (SD = 7.5) while non-attendees had
a mean of 17.37 (SD = 8.31), with a maximum score of 37.

This inference had to be qualified by the lack of random allo-
cation of students to attend/non-attend groups. Those that chose
to attend may already have had greater experience, academic con-
scientiousness or test-taking ability. We reasoned that students’
mid-term performance could be used as a proxy for these, since
this shows a linear association with the final exam (see Figure
2); yet, looking into the ranks in the mid-term versus final exam,
Thinkathon attendees had a median improvement of 7.5 places
while non-attendees on average ranked 6.5 places lower.

Thus, a one-way analysis of covariance (ANCOVA) was con-
ducted. Even after controlling for mid-term performance, there
was a statistical difference on performance by attendance [F(2, 104)
= 29.76, p<.05]. This suggests that the Thinkathon contributed
causally to an improvement in Python programming ability.

This is a conservative analysis: while attendance was based on
completion of the on-line surveys and not on a session register, we
counted over 50 attendees on the first evening, and so some students
must have not completed the survey; also, 32 people downloaded
the packs after the event without attending. These aspects would
tend to flatten any correlation. Descriptive analysis suggested that

Session 3C: CS1 ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

206

Figure 2: Relationship between mid-term result and final
exam

“downloading only” led to no discernible improvement compared
with doing neither - only the group that also attended improved.

In an analysis of the 23 participants who completed both the pre
and post survey we found there was a modest increase in confidence
about the exam from a mean of 2.91 (SD = 0.95) to a mean of 3.30
(SD = 0.63). When comparing all pre or post survey participants
(n=42) who had made final grade estimates to their actual grades
we discovered that the upper-quartile of final exam performers
most frequently underestimated their final exam grade and the
lower-quartile most frequently overestimated their final grade.

6 QUALITATIVE RESULTS
6.1 Student Experience
Two overarching themes emerged from qualitative analysis of the
post-Thinkathon survey data: instructional design and student learn-
ing. Most of the discussion relating to the instructional design either
highlighted benefits or improvements that could be made either
to the course or future Thinkathon events. Student learning com-
ments mostly related to either perceived benefits of taking part or
particular difficulties that they realised they had.

Reflecting on the instructional design of the Thinkathon, student
responses related primarily to the support afforded by tutors and
peers, the nature of the presented exercises, and the opportunity
to practice solving problems. Tutors were variously described as
being “super engaged”, “helpful and supportive”, and “very encour-
aging”, while peers were thought to provide a useful alternative
perspective: “Having not just tutors but other students helped, as
we could discuss problems and by seeing things slightly differently
helped me to understand different problems and how to solve them”.
The literature tells us novices benefit from interaction with their
peers[5]. They also maintain high motivation to succeed when they
receive personal tutoring from expert humans[3]. The informal
Thinkathon environment fostered both these kinds of interactions.

The way the exercises were presented proved more divisive,
with some students appreciating that the high number of similar
exercises provided an opportunity to “practice them over and over”,
while others felt the exercises to be “repetitive”. One student sum-
marised this tension as follows: “whilst it was good there was so

many questions in each booklet, it gave a lot of practice, at the same
time I think it’s very easy to get bogged down in them”. Students
also suggested that a greater sense of variety might be achieved
by enforcing some system of rotation, whereby groups of students
would be tasked with completing one kind of exercise before being
asked to move to another.

The value of practice was frequently expressed in terms of the
upcoming examination, with comments relating to “writing code
on paper” or how the exercises “helped me see how exam questions
would be laid out”.

Student participants described their learning experience primar-
ily in computing science-related terms, commenting on how the ex-
ercises enhanced their ability to comprehend andwrite code. The ex-
perience also appeared to facilitate learning that might be described
as affective (improving confidence), cognitive (enhancing problem-
solving skills), or meta-cognitive (facilitating self-assessment).

Improvements to code comprehension were described in terms of
understanding the code at hand (“trying to solve or execute a code
without a computer helps for deeper understanding”), including
the attendant concepts, and being able to describe it (“describing
code showed me what terminology I need to revise in order to talk
freely about code”).

References to the Thinkathon experience leading to improved
code writing ability were abundant, and the challenge of being
asked to write programs “from scratch” was highlighted by many as
being most significant: “It [Thinkathon] has helped me really think
about a program before writing it. Before I’d just write anything
that came to mind and fix it until it worked but now I tend to get
correct solutions the first or second attempt at a problem.”

In terms of self-assessment, the following comment proved par-
ticularly illuminating: “I didn’t know what to expect on the exam.
In a way, I didn’t knowwhat I didn’t know.” This echos findings that
students with low or partial knowledge find it difficult to accurately
assess their own level of competence and tend to overestimate their
ability [8].

6.2 Staff Experience
The one-and-a-half-hour discussion among the 17 TAs and staff
who had been involved in either or both of the Thinkathon design
and the sessions themselves elicited a number of interesting topics.

Those present at the sessions could tell how much the students
enjoyed them, and were surprised at the high level of interaction
between students – they were helping each other a lot. The first two
packs clearly got the students thinking: a TA said “hand execution
forces you to think through code, to think about every line – e.g.
mental models of variables. Can get lazy in front of a machine –
try, try, try until it works.” Indeed, the first pack which included
expression evaluation, naming constructs and describing how they
operated, as well as expression writing, took most students the
whole of the first session. This was a great surprise to staff. When
queried, students were keen to stress that they did not want to miss
out on anything and to make sure they had a firm foundation. Staff
described seeing real ‘light-bulb moments’ for the students, e.g. that
a single element slice of a list is still a list, and understanding fully
about the identity of data structures and their mutability – aspects
discussed in class but perhaps not followed up enough.

Session 3C: CS1 ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

207

The high level of interaction was somewhat at odds with our
intention to help the students develop the confidence to be able to
answer questions on their own. In discussion with staff, the students
felt the peer interaction was essential, and repeatedly stressing our
goal for them to answer confidently on their own did not change
their behaviour. Students noted how confronting it could be “to
talk to folk I don’t know well about what I don’t know”, indicating
their nervousness in approaching instructors and even TAs. The
implication here is that the Thinkathon questions highlighted for
the students that there was a lot they didn’t know; and that for
most students, not just a few, there was real learning even at the
simpler levels. This was not just a revision session.

Considering self-direction in the students’ study, we discussed
the relationship between the Thinkathon exercise packs and a text-
book in, say, mathematics that has a very large number of questions,
with answers, presented in a well-tried developmental sequence.
While staff remembered using such text-books in a self-study Mas-
tery Learning manner in mathematics and other subjects, they also
recognised that larger programming problems did not have the
kind of direct right/wrong answers as had the math questions.

Those in our group from other disciplines commented on how
labs are quite disconnected from lectures in the other sciences,
and exam preparation is based around reading of notes, hand-outs
and a text-book. In computing, the labs look real, authentic. By
comparison, neither the Thinkathon nor the exam look realistic. A
non-CS colleague commented “getting them to do stuff on paper
exams is the wrong thing”, a prevalent attitude among computer
scientists too, but another responded “the exam is doing exactly the
right thing, getting the student to articulate what they do and don’t
know, which is not required or effectively evidenced in the lab.”
This highlights the challenges we have in effectively signposting
to students the learning outcomes of a programming course.

7 DISCUSSION
While we have been excited and motivated by the Thinkathon
experience, attendance appearing to raise final course grade, it has
also delivered a salutary lesson. We started off acting on a clear
misunderstanding in students’ minds between lab activities and the
written exam, but we have realised that the problem lies somewhere
in the learning design between the PI-based lectures and the lab
sessions. Furthermore, the students really don’t know what it is
they should be learning. Unpacking this, we note the following.

We have depended on PI to satisfy the code comprehension side
of our curriculum. The pre-lecture work should help to embed
concepts; the discussion in class should induct novices into a pro-
grammers’ community of practice. Coupling this with relatively
traditional lab-based practical code writing activities has proven
to be wanting, however. The evaluation tells us that students, in-
cluding good students, don’t know even what we might consider
the basics: naming of constructs, explanation of how they work,
evaluation of expressions, simple desk execution. They spent an
entire evening on this material. Fundamentally, we have forgotten
how much there is to know, taking it for granted. Why should a
novice be expected to pick up a new vocabulary for a new kind
of language and the grammatical terms required to be able to talk

about it, without explicit instruction? PI does try to address this,
but we suspect it does it in too inefficient a manner.

On reflection, both staff and students now realise the huge value
of thinking and working on programming exercises away from
machines. Wewill re-introduce tutorial sessions in rooms away from
our labs, in which students work on Thinkathon style problems,
and possibly with regular hand-ins and grading. We moved away
from these in years past, for logistical reasons and also to maximise
programming time – but that was before we understood about the
importance of building the foundations soundly.

Tutorials bring with them the notion of discussion, and this
brings to mind Francis Bacon’s instruction from the 1600s that a
good education required both reading and writing, and also “confer-
ence” – the ability to speak and argue one’s case. We have writing in
abundance in our programming courses, and code comprehension
indicates that we should have reading, but what of conference? If
we can’t talk and argue about our practice, what kind of practitioner
are we? PI again can support this, but are we doing enough to foster
fruitful discussion, and have we identified good ways of putting it
to use? Our own labs have included limited elements of discussion,
but we could add code reviews or set up discussions on the benefits
of different programs solving the same problem.

The overall experience suggests to us a number of “social” learn-
ing outcomes for a programming course that currently lie hidden:

• The students need to know the full range of what matters
to us – explaining code using the correct language, hand-
execution, developing solutions away from machines (and
we need to adjust our instructional designs accordingly)

• Students must be able do all this on their own, and do it
exactly. Furthermore, with practice, we expect them to be
able to complete these activities correctly first-time. It is no
good for their peers or the TA to show them the answer.

• A resource like the Thinkathon packs are for individuals, not
a group thing. It is a self-learning resource at best, enabling
students to find out what they know and what they don’t.

The Thinkathon succeeded on the first of these points, but even
with our encouragement to the students during the sessions, it was
less effective on the second two points.

8 CONCLUSION
Realising late in our CS-0 course that our students were not pre-
pared for the upcoming written exam, we developed an evening
revision session format we dubbed Thinkathon, that proved effec-
tive in raising students’ grades. Evaluating the exercise has led us
to identify a number of important short-comings in our PI-based
course design, and consequent adjustments. In particular, we note:
the need to learn language vocabulary and grammatical terms thor-
oughly; the value of working away from machines; the importance
of discussion; and the explicit presentation of social learning out-
comes for a programming course.

ACKNOWLEDGMENTS
Many thanks to those who spent hours in discussion, developing the
Thinkathon exercises and supporting students during the sessions:
Niall Barr, Elizabeth Cole, Sarah Honeychurch, Fionnuala Johnson,
Derek Somerville and Ethel Tshukudu.

Session 3C: CS1 ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

208

REFERENCES
[1] Timothy C. Bell, Mike Fellows, and Ian H. Witten. 1998. Computer Science Un-

plugged: Off-line Activities and Games for All Ages. Computer Science Unplugged.
[2] Benjamin S Bloom. 1968. Learning for Mastery. Instruction and Curriculum.

Regional Education Laboratory for the Carolinas and Virginia, Topical Papers
and Reprints, Number 1. Evaluation Comment 1, 2 (1968).

[3] Kristy Elizabeth Boyer, Robert Phillips, Michael D. Wallis, Mladen A. Vouk, and
James C. Lester. 2009. Investigating the role of student motivation in computer
science education through one-on-one tutoring. Computer Science Education 19,
2 (Jun 2009), 111–135. https://doi.org/10.1080/08993400902937584

[4] Quintin Cutts, Sarah Esper, Marlena Fecho, Stephen R. Foster, and Beth Simon.
2012. The Abstraction Transition Taxonomy: Developing Desired Learning
Outcomes Through the Lens of Situated Cognition. In Proceedings of the Ninth
Annual International Conference on International Computing Education Research
(ICER ‘12). ACM, New York, NY, USA, 63–70. https://doi.org/10.1145/2361276.
2361290

[5] Adrian Devey and Angela Carbone. 2011. Helping First Year Novice Programming
Students PASS. In Proceedings of the Thirteenth Australasian Computing Education
Conference - Volume 114 (ACE ‘11). Australian Computer Society, Inc., 135–144.
http://dl.acm.org/citation.cfm?id=2459936.2459953

[6] Benedict du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[7] Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside
the glass box: presenting computing concepts to novices. International Journal
of Man-Machine Studies 14, 3 (1981), 237–249. https://doi.org/ttps://doi.org/10.
1016/S0020-7373(81)80056-9

[8] David Dunning, Kerri Johnson, Joyce Ehrlinger, and Justin Kruger. 2003. Why
People Fail to Recognize Their Own Incompetence. Current Directions in Psy-
chological Science 12, 3 (2003), 83–87. https://doi.org/10.1111/1467-8721.01235
arXiv:https://doi.org/10.1111/1467-8721.01235

[9] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The Beauty and Joy of
Computing. ACM Inroads 6, 4 (Nov. 2015), 71–79. https://doi.org/10.1145/2835184

[10] Kelly Downey Joe Michael Allen, Frank Vahid and Alex Daniel Edgcomb. 2018.
Weekly Programs in a CS1 Class: Experiences with Auto-graded Many-small
Programs (MSP). In 2018 ASEEAnnual Conference & Exposition. ASEEConferences,
Salt Lake City, Utah.

[11] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. 2005. A Study of
the Difficulties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE
‘05). ACM, 14–18. https://doi.org/10.1145/1067445.1067453

[12] Soohyun Nam Liao, Daniel Zingaro, Kevin Thai, Christine Alvarado, William G.
Griswold, and Leo Porter. 2019. A Robust Machine Learning Technique to Predict
Low-performing Students. ACM Trans. Comput. Educ. 19, 3, Article 18 (Jan. 2019),
19 pages. https://doi.org/10.1145/3277569

[13] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the fourth international workshop on computing education
research. ACM, 101–112.

[14] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-
nakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic Liter-
ature Review. In Proceedings Companion of the 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE 2018 Compan-
ion). ACM, New York, NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

[15] Eric Mazur. 2017. Peer Instruction. Springer Berlin Heidelberg, Berlin, Heidelberg,
9–19. https://doi.org/10.1007/978-3-662-54377-1_2

[16] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-national, Multi-institutional Study of Assessment of Pro-
gramming Skills of First-year CS Students. InWorking Group Reports from ITiCSE
on Innovation and Technology in Computer Science Education (ITiCSE-WGR ‘01).
ACM, 125–180. https://doi.org/10.1145/572133.572137 Canterbury, UK.

[17] J. J. G. van Merrienboer and H. P. M. Krammer. 1990. The “completion strategy”
in programming instruction: theoretical and empirical support. Research on
instructional design and effects / eds. S. Dijkstra, B.H.A.M. van Hout Wolters, P.C.
van der Sijde (1990), 45–61.

[18] Heng NgeeMok. 2014. Teaching tip: The flipped classroom. Journal of Information
Systems Education 25, 1 (2014), 7.

[19] Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-oriented Instruc-
tion and Its Influence on Problem Decomposition and Solution Construction. In
Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’07). ACM, New York, NY, USA, 151–155.
https://doi.org/10.1145/1268784.1268830

[20] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52. Australian Computer
Society, Inc., 157–163.

[21] Anthony Robins. 2010. Learning edge momentum: A new account of outcomes
in CS1. Computer Science Education 20, 1 (2010), 37–71. https://doi.org/10.1080/
08993401003612167

[22] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Education
13, 2 (Jun 2003), 137–172. https://doi.org/10.1076/csed.13.2.137.14200

[23] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[24] Carsten Schulte. 2008. Block Model: An Educational Model of Program Compre-

hension As a Tool for a Scholarly Approach to Teaching. In Proceedings of the
Fourth International Workshop on Computing Education Research (ICER ’08). ACM,
New York, NY, USA, 149–160. https://doi.org/10.1145/1404520.1404535

[25] P. Seeling. 2016. Switching to blend-Ed: Effects of replacing the textbook with the
browser in an introductory computer programming course. In 2016 IEEE Frontiers
in Education Conference (FIE). 1–5. https://doi.org/10.1109/FIE.2016.7757620

[26] Beth Simon and Quintin Cutts. 2012. How to Implement a Peer Instruction-
designed CS Principles Course. ACM Inroads 3, 2 (June 2012), 72–74. https:
//doi.org/10.1145/2189835.2189858

[27] B. Simon, M. Kohanfars, J. Lee, K. Tamayo, and Q. Cutts. 2010. Experience
report: peer instruction in introductory computing. , 341–345 pages. https:
//doi.org/10.1145/1734263.1734381

[28] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-
edge. IEEE Trans. Softw. Eng. 10, 5 (Sep 1984), 595–609. https://doi.org/10.1109/
TSE.1984.5010283

[29] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
Trans. Comput. Educ. 13, 2, Article 8 (July 2013), 31 pages. https://doi.org/10.
1145/2483710.2483713

[30] John Stamey and Steve Sheel. 2010. A Boot Camp Approach to Learning Pro-
gramming in a CS0 Course. J. Comput. Sci. Coll. 25, 5 (May 2010), 34–40.

[31] Jane Zeni. 1998. A guide to ethical issues and action research [1]. Educational
action research 6, 1 (1998), 9–19. https://doi.org/10.1080/09650799800200053

Session 3C: CS1 ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

209

https://doi.org/10.1080/08993400902937584
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1145/2361276.2361290
http://dl.acm.org/citation.cfm?id=2459936.2459953
https://doi.org/ttps://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/ttps://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/10.1111/1467-8721.01235
http://arxiv.org/abs/https://doi.org/10.1111/1467-8721.01235
https://doi.org/10.1145/2835184
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1145/3277569
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1007/978-3-662-54377-1_2
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1109/FIE.2016.7757620
https://doi.org/10.1145/2189835.2189858
https://doi.org/10.1145/2189835.2189858
https://doi.org/10.1145/1734263.1734381
https://doi.org/10.1145/1734263.1734381
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1080/09650799800200053

	Abstract
	1 Introduction
	2 Course Design
	3 Thinkathon Design
	4 Evaluation Methodology
	5 Quantitative Results
	6 Qualitative Results
	6.1 Student Experience
	6.2 Staff Experience

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

