
Pass Rates in Introductory Programming and in other STEM
Disciplines

Simon∗
University of Newcastle

Australia
simon@newcastle.edu.au

Andrew Luxton-Reilly∗
University of Auckland

New Zealand
andrew@cs.auckland.ac.nz

Vangel V Ajanovski
Ss Cyril and Methodius University

Republic of North Macedonia
vangel.ajanovski@finki.ukim.mk

Eric Fouh
University of Pennsylvania

USA
efouh@cis.upenn.edu

Christabel Gonsalvez
Monash University

Australia
chris.gonsalvez@monash.edu

Juho Leinonen
University of Helsinki

Finland
juho.leinonen@helsinki.fi

Jack Parkinson
University of Glasgow

UK
jack.parkinson@glasgow.ac.uk

Matthew Poole
University of Portsmouth

UK
matthew.poole@port.ac.uk

Neena Thota
University of Massachusetts Amherst

USA
nthota@cs.umass.edu

ABSTRACT
Vast numbers of publications in computing education begin with
the premise that programming is hard to learn and hard to teach.
Many papers note that failure rates in computing courses, and par-
ticularly in introductory programming courses, are higher than
their institutions would like. Two distinct research projects in 2007
and 2014 concluded that average success rates in introductory pro-
gramming courses world-wide were in the region of 67%, and a
recent replication of the first project found an average pass rate of
about 72%. The authors of those studies concluded that there was
little evidence that failure rates in introductory programming were
concerningly high.

However, there is no absolute scale by which pass or failure rates
are measured, so whether a failure rate is concerningly high will
depend on what that rate is compared against. As computing is
typically considered to be a STEM subject, this paper considers how
pass rates for introductory programming courses compare with
those for other introductory STEM courses. A comparison of this
sort could prove useful in demonstrating whether the pass rates
are comparatively low, and if so, how widespread such findings are.

This paper is the report of an ITiCSE working group that gath-
ered information on pass rates from several institutions to deter-
mine whether prior results can be confirmed, and conducted a
detailed comparison of pass rates in introductory programming
courses with pass rates in introductory courses in other STEM
disciplines.
∗Working group co-leader

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7567-2/19/07. . . $15.00
https://doi.org/10.1145/3344429.3372502

The group found that pass rates in introductory programming
courses appear to average about 75%; that there is some evidence
that they sit at the low end of the range of pass rates in intro-
ductory STEM courses; and that pass rates both in introductory
programming and in other introductory STEM courses appear to
have remained fairly stable over the past five years. All of these
findings must be regarded with some caution, for reasons that
are explained in the paper. Despite the lack of evidence that pass
rates are substantially lower than in other STEM courses, there is
still scope to improve the pass rates of introductory programming
courses, and future research should continue to investigate ways of
improving student learning in introductory programming courses.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
ITiCSE working group; CS1; introductory programming; pass rate;
failure rate; STEM disciplines

ACM Reference Format:
Simon, Andrew Luxton-Reilly, Vangel V Ajanovski, Eric Fouh, Christabel
Gonsalvez, Juho Leinonen, Jack Parkinson, Matthew Poole, and Neena
Thota. 2019. Pass Rates in Introductory Programming and in other STEM
Disciplines. In 2019 ITiCSE Working Group Reports (ITiCSE-WGR ’19), July
15–17, 2019, Aberdeen, Scotland Uk. ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/3344429.3372502

1 INTRODUCTION
The computing education community generally accepts the view
expressed by Robins et al. [34] that “Learning to program is hard
. . . Programming courses are generally regarded as difficult, and
often have the highest dropout rates.” This sentiment is echoed
throughout the literature with statements such as “It is well known
in the Computer Science Education community that students have
difficulty with programming courses and this can result in high
drop-out and failure rates” [6]. Two authors of the current paper led

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

53

https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/3344429.3372502
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3344429.3372502&domain=pdf&date_stamp=2019-12-18

a 2018 ITiCSE working group [28] that conducted a broad-ranging
review of the literature pertaining to introductory programming
courses. The team conducting that review considered 1666 papers,
and at times it seemed that almost every one of those papers had
words in its introduction to the effect of ‘programming is hard to
learn’ or ‘introductory programming courses have high failure and
dropout rates’. However, there are relatively few papers that have
explored the empirical evidence for the claim that introductory
programming courses have high failure rates.

We are aware of only three prior studies that have gathered
data on pass or failure rates in introductory programming courses.
Two of these [4, 5] each gathered a single year’s data by surveying
authors of computing education papers; the third [35] gathered
data over a somewhat extended period by searching the literature
for explicit mentions of pass rates in introductory programming
courses. Our paper extends this previous work by reporting a world-
wide selection of pass rates for introductory programming courses
over the past five years and comparing these to pass rates in other
introductory STEM courses.

Interestingly, although many papers claiming that introductory
programming courses have high failure rates cite Bennedsen and
Caspersen [4] as evidence, the authors of that paper conclude: “We
did not find the failure-rate of CS1 to be alarmingly high”. In a
more recent paper, Bennedsen and Caspersen [5] replicate their
earlier work, writing: “As we’ve noted, it continues to be the general
view that there are high failure rates in introductory programming
courses. However, to our knowledge, no worldwide statistics on
failure rates, dropout rates, or pass rates for introductory program-
ming courses at university level exist to back up this postulate.” In
the results of their replication, the authors found that the situa-
tion appears to have improved slightly over the last fifteen years,
and conclude (once again), that failure rates in introductory pro-
gramming are not alarmingly high. However, they also note several
threats to the validity of their findings and suggest that a more
thorough investigation of failure rates would be useful to the com-
munity.

It is our belief that discussions of whether pass rates are high or
low cannot meaningfully take place in isolation, since concepts of
high and low, easy and difficult, are not themselves absolute, but
are relative to some assumed concept of what is normal. Further,
establishing what is ‘normal’ as a point of comparison is context-
dependent since each country and culture may have constructed
its own view of what is typical in that environment. Bennedsen
and Caspersen [5] reiterate a reviewer comment that “a failure
rate of 28% at an elite university may be considered outrageously
high and that 28% in a small university may be considered low”. In
other words, the context of the course has implications for how a
given pass rate is interpreted. For example, some governments tie
university funding to pass rates in courses [11, 12], which clearly
provides institutional pressure to keep pass rates at a level that
ensures funding, irrespective of real or notional standards of student
achievement.

Despite such issues, it may be possible to determine if there is an
empirical basis for the perception that introductory programming
courses have low pass rates by comparing pass rates of program-
ming courses with those of other courses in the same local context.
For example, if an introductory programming course has a much

lower pass rate than other courses taught in the same institution,
it would be reasonable to assert that passing the introductory pro-
gramming course in that institution is more difficult than passing
other courses in that institution.

As we aim to compare introductory programming courses with
other courses in the same cultural and institutional context, we
need to consider what constitutes a fair comparison, and what
conclusions we might be able to draw based on that comparison.
While other comparisons might have been interesting, in this study
we focus on the difference between introductory programming
courses and other introductory STEM courses. Although there
is some debate about whether computer science is even a ‘real’
science, there appears to be strong agreement that it is at least
related to science, technology, engineering, and mathematics [14],
if not composed of those subjects. We therefore aim to compare
pass rates in introductory programming with those in courses in
similar disciplinary areas — that is, STEM courses. The question
of whether pass rates of introductory programming courses differ
from those in arts, law, business, or other disciplinary areas is not
addressed here.

This report analyses pass rates over the past five years, from a
worldwide selection of universities, in introductory programming
courses and in introductory courses in other STEM disciplines. This
updates and triangulates the findings of the prior studies of pass
rates in introductory computing courses, and additionally helps
to establish whether pass rates in computing courses really are
substantially lower than in other STEM courses, and whether this
is a universal phenomenon.

The work addresses the following research questions:

RQ1 What are the current pass rates in a selection of introductory
programming courses around the world?

RQ2 How do the pass rates in introductory programming courses
compare with those in other introductory STEM courses?

RQ3 What trends, if any, can be discerned in pass rates in intro-
ductory programming courses over the past five years?

2 RELATEDWORK
In reviewing the literature, we found few studies that focus on
pass or failure rates in introductory programming courses, or more
broadly in introductory STEM courses. This may be because uni-
versities and educators are reluctant to publish papers indicating
high failure rates or low retention rates [4, 20, 35].

In this section, we review work on pass/fail and dropout rates
in introductory programming courses, as well as related work in
pass/fail rates in other STEM disciplines. We also look at avail-
able national data on attrition rates in computing and other STEM
disciplines. When discussing pass rates, failure rates, and related
concepts in this section, we use the definitions of the authors whose
work we are discussing. For example, while our work is expressed
in terms of pass rates, if other authors report on failure rates or
dropout rates we will use those terms when reporting their work.

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

54

2.1 Pass/Fail Rates in Introductory
Programming Courses

In 2007, Bennedsen and Caspersen [4] conducted a worldwide sur-
vey of computing academics to gather the pass rates in their intro-
ductory programming courses. The survey was delivered to 479
authors of papers published at five different computing education
conferences, and 63 usable responses were collected, of which 50
were from universities and the remainder from colleges. This pro-
vides a snapshot of pass rates at a single point in time. The study
reported an average pass rate of 66% for university courses and 88%
for college courses in introductory programming, giving an overall
pass rate of 67% with large variations in the pass, fail, abort, and
skip rates (the meanings of these terms are discussed in section
3.2). The authors observed that smaller classes appear to have a
higher pass rate than larger classes, but no statistical analysis was
conducted to validate the observation. The authors note several
threats to validity, including the likely bias resulting from sampling
authors who publish in the computing education community.

Comparing their findings with graduation data from UNESCO,
Bennedsen and Caspersen [4] concluded that the 33% failure rate
was not unusually high. However, it is problematic to compare the
pass rate of introductory programming courses collected predomi-
nantly in the USA with graduation rates collected predominantly
from western European countries. Further, the authors use enrol-
ment numbers in 1999 compared with graduation numbers in 2004
to determine that 27% of students succeeded; however, given that
students must complete several courses in sequence to complete
their degrees, a failure rate of 33% each year would result in comple-
tion rates much lower than the reported 27%. This suggests that the
failure rate of 33% found by Bennedsen and Caspersen [4] is higher
than typical of computing courses throughout the degree programs
recorded in the UNESCO data. It is unclear what conclusions we can
draw from this comparison, or whether it informs the perception
of difficulty of introductory programming courses.

Pass and failure rates in introductory programming were revis-
ited in 2014 by Watson and Li [35], who established that pass rates
in the literature on introductory programming courses showed an
almost identical average of 68%. Their study analysed published
accounts of pass rates from 51 institutions in 15 countries and con-
cluded that pass rates varied by country, showed no improvement
over time, and were independent of the programming language
taught. They found a statistically significant difference between the
pass rates reported for small classes (< 30 students) and those for
larger classes (≥ 30 students), confirming the earlier observation
that smaller introductory programming classes have higher pass
rates than larger classes. Like the authors of the first study, they
did not consider the pass rate to be alarmingly low. As there are so
few studies that investigate the pass rates of introductory program-
ming courses, any additional data is helpful. However, the papers
published by academics involved in the computing education com-
munity form a biased sample that may not be representative of the
community as a whole. We might speculate that authors may be
using low pass rates as motivation for an intervention that they
report, so the reported pass rates might be lower than those that
are widespread in the community. Alternatively, those who pub-
lish papers in the computing education community might be the

most effective teachers of introductory programming courses, so re-
ported pass rates from that community might be higher than those
typically found worldwide. We treat these findings with caution.

In a replication study in 2019, Bennedsen and Caspersen [5]
received 170 responses to their survey, and found a statistically sig-
nificant increase in the pass rate to 72.6% (which we will henceforth
refer to as 73%). As with their previous results, there was wide vari-
ation in the pass, fail, abort, and skip rates. The mean course size
had grown from 116 in 2006/07 to 196, and courses with fewer than
30 students dropped from 23% to 9% of their data set, reflecting the
anecdotal reports of substantial growth in student enrolments in
introductory programming courses. Unlike the earlier study, there
was little difference between universities and colleges for abort,
skip, and fail rates, but there was a tendency for colleges to have
better pass rates than universities. As a basis for comparison, the
authors tentatively established a US national average failure rate
in college algebra of between 42% and 50%, and concluded that the
average failure rate of 28% in introductory programming did not
seem particularly high.

A number of studies [2, 7, 19, 25, 34, 35] attest to the belief that
learning to program is difficult. The literature also includes a num-
ber of suggestions as to why pass rates are low in introductory
programming courses. For example, Luxton-Reilly [27] suggests
that “we make our introductory courses difficult by establishing
unrealistic expectations for novice programming students”; Hoda
and Andreae [21] suggest that the high level of attrition and failure
are due not so much to incapable students as to inadequate teach-
ing; and Parsons et al. [30] suggest that “the methods of assessment
... do not reflect the knowledge and skills that a real programmer
needs to write real code.” Some studies have also linked low perfor-
mances in introductory programming courses to students’ lack of
self-regulated learning skills [6, 16].

Pass rates in courses are inextricably linked with failure rates
and dropout rates. There is a substantial body of literature exam-
ining why students drop courses, and in particular why they drop
introductory computing courses. Some of the reasons given are
students’ comfort level; expectations and perceptions of not getting
enough help from course staff; difficulty in understanding course
content; time management issues; and the lack of consequences
of dropping out [8, 22–24]. However, the intent of this report is to
attempt to measure, not to explain, and it is beyond the scope of
the report to revisit the question of reasons for dropping out or to
cover that literature in detail.

2.2 Pass/Fail Rates in other STEM Disciplines
There is substantially more work on failure rates in STEM courses
than in introductory programming courses. Freeman et al. [18]
reviewed eleven studies from 1992 to 2007 and noted that although
there was not a comprehensive review of STEM pass rates, the stud-
ies they examined suggested that approximately a third of students
failed in STEM gateway courses. They found reports of failure rates
for introductory courses in biology, chemistry, computer science,
engineering, mathematics, and physics, ranging from 85% (in bio-
chemistry) to 25% (in biology). The reported average failure rate of
33% by Bennedsen and Caspersen [4] was similar to that reported in

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

55

Table 1: Average introductory STEM pass percentages com-
paring courses within specific institutions as reported in the
literature

Reference CS Maths Phys Chem Biol

Peterfreund et al. [31] - 84 91 87 79
Liron and Steinhauer [26] 62 62 50 - -
Chapman et al. [9] - 75 83 80 -

introductory chemical engineering (32%) and introductory physics
(33%), and better than in introductory calculus (42%).

Correlations have been found between failure rates and the in-
structional strategies used in STEM courses. A meta-analysis of
225 studies, reporting data on examination scores or failure rates in
undergraduate STEM courses [17], found that average failure rates
were 22% for courses using active learning compared with 34% for
those using traditional lecturing. It is worth noting that the average
failure rates for STEM courses delivered using traditional lecturing
appear very similar to those of introductory programming courses.

There are very few studies that compare the percentages of stu-
dents passing different courses within the same institution. Table 1
provides a summary of the rates reported in three such studies,
which compared the impacts of different instructional methods on
pass rates within the same institution. The number reported is the
unweighted average of course pass rates: if the paper reports two
different pass rates for the same subject/course, the average of those
numbers is reported, regardless of the number of students in each
course. In line with recommended practice, we have rounded the
reported percentages to integer values. We note that the introduc-
tory programming course is equal second-lowest of ten different
reported pass rates, which may be considered cause for concern.
However, when we consider the individual institutions, the one
introductory programming course is equal highest of the three
courses reported from its institution, which is not particularly con-
cerning. This illustrates the importance of comparing data obtained
from the same institution rather than simply aggregating across all
courses.

2.3 National Data on Attrition Rates in
Computing and other STEM Disciplines

While our investigation compares pass rates in introductory pro-
gramming courses with those in other STEM introductory courses,
we thought that it might be instructive to look at publicly available
attrition rates. Attrition generally refers to withdrawal from an
entire program of study; obviously, students who do this while en-
rolled in an introductory programming course will also necessarily
withdraw from that course.

In the US, an analysis of dropouts between 2003 and 2009 found
that about half of STEM undergraduate students leave the field
before completing a college degree [10]. The attrition rate was
highest for majors in computer/information sciences and the report
concluded that the 48% attrition rate for STEM undergraduates
was similar to that for other fields. An analysis [15] of some of the
factors that influence persistence rates in STEM fields revealed that
academic preparation and entry test scores, along with students’

Table 2: Percentage attrition rates for computing and other
STEM disciplines

Country CS Maths Phys Biol Eng

UK∗ [1] 10 5 4 7 7
USA+ [10] 31 12 18 15 20
USA++ [10] 28 26 28 30 21

∗ Started higher/post secondary education in 2016-2017 and left after
one year without a degree.
+ Started higher/post secondary education in 2003-2004 and left within
six years without a degree (2003-2009).
++ Started higher/post secondary education in 2003-2004 and switched
to another degree within six years (2003-2009).

performance in entry level classes, were important predictors of
student persistence in STEM field majors.

National reports of attrition rates in computing and other fields
are available for the UK [1] and the USA [10], and the rates are
summarised in table 2. Again, in line with recommended practice,
we have rounded the reported percentages to integer values. In both
countries, computing has the highest rate of students exiting higher
education. In the US, computing is second only to physics in terms
of students who switched to a different major. The UK data are
reported after the first year, meaning that we should expect those
students to have taken an introductory programming course in the
year when they decided to drop their program of study. We cannot
make the same assumption from the US data as the time frame
spans several years. Similar data from Ireland, grouped differently
[32], shows a 45% attrition rate for computing compared with 33%
for engineering and 24% for science and mathematics.

We are left to ponder what impact, if any, introductory program-
ming courses might have on these high attrition rates.

3 METHOD
The plan of our working group was to use three approaches to
discovering and collecting data.

• Each member of the working group sought to gather data on
pass rates in introductory courses from their own institution,
both in programming and in other STEM disciplines, for the
past five years. Analysis of this data would give a picture of
pass rates at a small number of institutions, and would help
to establish whether any trends can be discerned over the
past five years.

• The working group also conducted a survey in which it
asked respondents to provide the same data for just the
most recent year at their own institutions. Analysis of that
data would strengthen the findings from the institutions
of the working group members, giving a clear snapshot of
the current relationship between pass rates in introductory
programming courses and those in other introductory STEM
courses. The survey was circulated to the SIGCSE-members
email list, which at the time the invitation was posted had
1183 subscribers.

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

56

• Finally, the working group sought publicly accessible data on
pass rates reported at a state or national level, to complement
the data from members’ institutions and from the survey.

In the event, it was surprisingly difficult to gather the data that we
sought for this project. Many universities are sensitive about their
pass rates and reluctant to release that data, even in an aggregated
and fully anonymous form.

Most members of the working group were required to go through
detailed and time-consuming processes in order to be granted ac-
cess to the data for their institutions. In many cases, these processes
took several months, and included provisions that the results must
be presented in such a way that it would not be possible for readers
to trace them back to individual institutions. One member of the
group was simply denied access to the relevant data. We are there-
fore limited in the contextual information we can provide about
individual institutions that contributed data to the study.

Following this experience, we were not sure that anybody would
be in a position to respond to the survey, and were not surprised to
receive only ten responses.

3.1 Unified Data Set
During an initial meeting, members of the working group discussed
how data obtained from different institutions and with different
levels of detail could be combined using a common structure. After a
thorough discussion about terminology (see section 3.2), a common
baseline for a joint data set was defined, based on types of data that
were available consistently across all institutions. All the gathered
data was converted to the same form, in order to facilitate analysis
both within and between institutions. The final joint data structure
comprises the following attributes:

• University code — to be used for reporting results of analyses
across institutions without revealing the institutions’ names

• Course code — used internally to identify distinct courses
within institutions

• Course name — used internally to gather information about
the course and properly categorise it

• Year the course was offered — used for longitudinal analysis
• Course offering — number used to distinguish among several
offerings of the same course during the same year, but at
different periods/terms/semesters or locations

• Enrolments — number of students enrolled in the course at
the time the pass rate is calculated

• Passes — number of students who passed the course
• Category — this attribute was added to the data set and was
decided by the working group members, based on the agreed
categorisation scheme explained in section 3.3.

All of the data in the joint data set was obtained directly from
individual institutions or from national databases. Both data sources
are combined in the joint data set and are used in the analysis
reported in section 4. Data from the survey responses was not
incorporated in the joint data set, but is reported separately.

3.2 Terminology
As we began to combine data from different institutions, we quickly
realised that pertinent words and phrases in common use can actu-
ally mean very different things. For example, a ‘pass’ might come

in different types, such as a ‘restricted pass’ that can be credited
towards a degree program but does not fulfil the prerequisite re-
quirements needed to continue to more advanced topics in that
subject area. That being the case, it is not feasible to describe our
method without clearly explaining our terminology. In this section,
we describe how we operationalise the various concepts for the
purpose of this study, and discuss how our terms differ from those
in the related work.

3.2.1 Course. In this paper, we use the term ‘course’ to mean a
single cohesive set of content, typically taught and assessed within
a single semester. We believe that ‘course’ is understood fairly
consistently, although the terms ‘unit’, ‘subject’, and ‘module’ are
known to be used as equivalents in some institutions.

3.2.2 Introductory. Although in this paper we use the phrase ‘in-
troductory course’, it is not always obvious when a course should be
treated as introductory. For the purposes of this study, we consider
a course to be introductory if it is a viable entry point to the subject
matter and can be taken without any formal prerequisites from
within the university. Courses treated as introductory are typically
available for students to take in their first year of study.

Some introductory courses may require students to have taken
particular courses at school, while others do not require any previ-
ous disciplinary knowledge. Some institutions have entry criteria
(whether imposed at the course, discipline, or institutional level)
that require a particular level of academic background, either in
cognate subject areas or in general academic performance (such as
a GPA), while other institutions have no such criteria for entry.

Further, some subject areas may offer several different introduc-
tory courses, acting as multiple entry points and allowing students
to choose an introductory course commensurate with their ex-
perience. For example, some universities may offer a slow-paced
introductory programming course for students who have not previ-
ously encountered programming, and a faster-paced introduction
to programming for students who are self-taught or who have taken
computing at school. We consider all such courses to be introduc-
tory, despite potential differences in their student cohorts, their
pace, and their content.

3.2.3 Programming. A wide variety of courses teach programming
at introductory level. There are two main factors that are relevant
in knowing whether a course should be treated as an ‘introductory
programming’ course: the target audience and the focus of the
content. We make a clear distinction between courses that teach
programming primarily for computing students, and those that
teach programming primarily for students of other disciplines. We
also distinguish between courses whose focus is general purpose
programming (e.g., ‘Introduction to programming in Python’) and
courses designed to teach programming with a more specific goal
in mind (e.g., ‘Programming web applications’).

When examining data from multiple institutions it is not always
possible to know whether a given course is available only to com-
puting students, to other students, or both, and we are unable to
determine which students actually take the course, so we cannot
distinguish courses in this way. Instead we focus on the course
content and course description.

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

57

Some courses are taught within computing discipline areas (that
is, offered by disciplines variously called computer science, soft-
ware engineering, information technology, informatics, etc.) and
focus on teaching general programming skills in courses such as
‘Introduction to programming’ and ‘Introduction to problem solv-
ing with computers’. Other courses clearly teach programming to
a non-computing audience, with course titles such as ‘Engineering
computing’ and ‘Computing for physics’. Further, some courses
involve programming, but in a more specialised context, such as
‘Programming for creativity’, ‘Introduction to programming with
databases’ and ‘Business application programming’.

For the purposes of this paper, we will use the phrase ‘intro-
ductory programming’ to refer to courses that appear to focus
on general-purpose programming for computing students, even
though students from other disciplines might also enrol in these
courses. We distinguish these courses, which are often referred
to as CS1 courses, from introductory courses that appear to teach
programming in other contexts or for other student groups, which
we hereafter refer to as ‘cross-disciplinary programming’ courses.

Courses that teach computing concepts other than program-
ming (such as ‘Computer architecture’ or ‘Database design’) are
categorised as computing courses, but not as programming courses.

While this study, like those that precede it, makes an assessment
of pass rates in introductory programming courses, we empha-
sise that there is no such thing as ‘the introductory programming
course’; there are probably as many forms of introductory pro-
gramming course as there are offerings. All of the courses analysed
in this study have been identified as introductory programming
courses, but we do not know their content, their level of difficulty,
the number of hours of teaching that they involve, what program-
ming languages they use, what teaching approaches they use, how
many students they have, the number, nature, and weighting of
their assessment items, or the many other factors that undoubtedly
influence their pass rates. Therefore, when we discuss introductory
programming courses, we urge readers to remain aware that we
are in fact discussing a great variety of courses that happen to fit
the same generic term.

3.2.4 Enrolment. The interpretation of student enrolment is criti-
cal to our analysis since we are interested in the number of students
that pass a course as a percentage of the number of students enrolled
in that course.

Although the concept of enrolment may initially appear to be
straightforward, there are several factors related to institutional
contexts that affect how enrolment is calculated, and consequently
the basis on which pass rates are calculated. For example, we need
to consider how to address the situation where a student initially
decides to take a course but then changes their mind.

Typically, if a student changes their mind before the course starts
then we would not want to count them as having enrolled but failed
to pass the course. It is less clear how to record the situation when a
student remains in the course for a period of time and then decides
not to continue. If a student changes their mind early in the course
(immediately after the first class, for example), then it does not seem
appropriate to record them as a ‘drop’ or a ‘failure to complete’.
However, if a student changes their mind a day before the end of
the course, we would want to record that as a failed attempt at the

course. Additionally, a student may choose to enrol in a course after
the start of the course. In this case, we would want to ensure that
the student contributes not only to the count of outcomes, but also
to the count of enrolments. Deciding when to record the student
as making a genuine attempt at a course is somewhat problematic,
particularly as not all institutions record the same data, and those
that do record the same data do not always record it in the same
way.

Many institutions provide a ‘grace’ period after the start of the
course in which students may change their enrolment. For some
institutions involved in the study, this period is two weeks, while
other institutions allow up to four weeks for a student to change
courses. Many institutions do not record a student as enrolled in a
course if they have removed themselves from the course within the
grace period. At the end of the grace period there is a ‘census’ date
after which a student may not change their enrolment. There are
also institutions that consider students to be enrolled only if they
are still active at the end of the teaching period; for example, when
the final exam is held.

For institutions where we have sufficient data, we define the
enrolment of a course to be the number of students that are in that
course at the census date for their institution (which is typically
2-4 weeks after the start of classes). If an institution has no grace
period in which students can change their course selection, we
consider the census date to be the start of the course (or the time of
enrolment if no subsequent changes are permitted). However, for
some institutions we have no way of knowing at what point the
number of enrolled students is assessed, and we must simply accept
the pass rate as provided without knowing how it was calculated.

3.2.5 Withdraw. Several institutions allow students to formally
‘withdraw’ from a course after a census date has passed. Typically
this will not result in a refund of any fees that students might have
paid, but it is recorded on their academic record as a ‘withdraw’
rather than a fail. This is equivalent to the term ‘abort’ used by
Bennedsen and Caspersen [5], but we note that is is variously
referred to as ‘drop/drop-out’ or ‘non-completion’; at the same time,
we acknowledge that ‘drop’ is often used to refer to withdrawal
from an entire program of study, or to a change of major, rather
than withdrawal from a single course.

In some institutions, for example in England and Wales, to with-
draw from a course one would have to withdraw from the whole
degree program, and the reasons that a student might choose to
drop their program are not necessarily based on their performance
in or their response to a single course such as introductory pro-
gramming.

A withdrawal might or might not affect the GPA of a student
(depending on the country and institution), but many students
prefer to have a withdraw rather than a fail recorded on their
academic transcript. Additionally, some institutions prefer students
to withdraw rather than fail due to the reporting requirements of
the institution; for example, an institution may report a higher pass
rate if it is based on the number of students who attempt the final
exam. From the data available, we cannot know why a student has
withdrawn, but we do know that a student who has withdrawn
from a course has not passed that course.

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

58

3.2.6 Skip. Bennedsen and Caspersen [5] use the term ‘skip’ to
refer to students who were permitted to attempt the final exam but
did not do so (for courses that have final exams). In other institu-
tions, this may be reported as ‘did not sit (DNS)’ or ‘absent fail’. In
some institutions, a range of other categories of non-completion
are recorded, including ‘did not complete’ and ‘not satisfied re-
quirements (NSR)’ (for courses that have completion requirements
that are not met, such as undertaking a given number of hours of
practical work). In other institutions, students in this position are
simply given fail grades.

This description assumes that where students have missed the
exam for unavoidable external reasons such as illness, their cases
have been resolved — for example by the offer of a subsequent exam
— and they have subsequently been classified into one of the other
categories such as pass or fail.

We did not capture ‘skip’ rates and cannot report them separately;
instead, students who might be classified as ‘skip’ in related work
are included here as students who do not pass a course. In our
analysis we focus on pass rates and do not distinguish between the
different ways that a student might not pass.

3.2.7 Fail. A wide variety of outcomes are treated as fail grades. In
some places, an ‘F’ is an explicit fail, while others assign different
levels of failure, such as distinguishing between ‘D–’, ‘D’ and ‘D+’,
which are all considered failing grades in some places.

3.2.8 Pass. Passing grades are typically awarded with variations
in achievement (e.g.,letter grades, numeric grades, or named grades
such as high distinction and distinction), but can sometimes include
non-graded courses for which students are awarded only a pass or
a fail. In some institutions, a letter grade of D is considered to be a
passing grade, but one that does not qualify the student to continue
to subsequent courses in the same subject area.

In this paper, we treat any grade that can be credited towards
completion of a degree program as a passing grade, even though in
some cases the grade will be insufficient for the student to continue
to more advanced material in that subject area.

Because the notion of failing a course is fraught with incon-
sistency (for example, is withdrawing from a course the same as
failing a course?), it is difficult to report failure rates consistently
across multiple institutions. On the other hand, we believe that the
notion of a pass is relatively clear: a grade that permits the course
to count towards a student’s degree completion requirements. In
this paper, we focus on the number of students who are enrolled in
a course at the census date for that institution if it has one, and the
number of students who pass the course; and we report pass rates
rather than fail (or abort, or skip, or drop) rates.

3.2.9 STEM. In choosing to compare pass rates in introductory pro-
gramming courses with those in other introductory STEM courses,
we acknowledge that there is no universally agreed definition of
STEM. The acronym represents the phrase ‘science, technology,
engineering, and mathematics’; but all four of those terms are them-
selves open to multiple interpretations. Indeed, while it appears
to be generally accepted that computing falls into the technology
category, there are people who question whether computing is
part of STEM, and a web search readily finds universities using
the wording ‘STEM and computer science’. Further, it is not clear

Table 3: Course category keywords used in this report

Keyword Description

prog-comp Introductory programming courses in computing
(introductory programming)

prog-other Introductory programming courses for students
in other disciplines (cross-disciplinary program-
ming)

comp Non-programming courses in computing
maths Mathematics
stats Statistics
phys Physics
chem Chemistry
biol Biology
earth Earth sciences
psych Psychology
health Health & medical sciences
eng-ee Electrical & electronic engineering
eng-other Other engineering disciplines
other Other (including computing skills for students in

other disciplines)

whether medicine and related disciplines are considered part of
science, and thus of STEM.

Members of this working group used their own understanding
of STEM courses when collecting data from their institutions and
from public sources. This is not considered a threat to validity, as
it was clearly never going to be possible to gather data for every
introductory STEM course at every institution. The outcome of this
study might therefore be described more precisely as a comparison
of pass rates in a selection of introductory programming courses
with pass rates in a selection of STEM and related courses at the
same institutions.

3.3 Data Categorisation
While our expressed intention was to compare pass rates in intro-
ductory programming courses with those in other introductory
STEM courses, we saw potential benefit in breaking down those
other STEM courses into recognisable subject areas. Before col-
lating all of the data, the group chose the categories into which
courses would be assigned and discussed the classification of some
oddities and cross-disciplinary courses. Once categories had been
established, each member assessed a subset of the data, assigning
each course to a category based on a combination of the course’s de-
livering department (where this was captured), course title, course
code (which often includes hints such as BIOL or CHEM), and in
some cases the public course descriptions supplied by the institu-
tions. Table 3 shows the categories into which the courses were
classified.

3.3.1 Classification Reliability. We conducted an inter-rater relia-
bility test on our classification of courses into subject groupings,
using the Fleiss-Davis kappa [13], a chance-corrected measure of
reliability for the situation in which each classifier independently
classifies each item into one of a fixed set of categories. As test data

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

59

we used a set of 41 courses, from a university that was not part of
our data set, that were possibly introductory STEM courses. None
of the team were familiar with these courses.

Each member of the team independently classified each of the
courses into one of 15 categories: the 14 listed in table 3, and not-
intro, a category for courses that would not be included in our data
set, either because they are not considered STEM or because they
are not genuinely introductory courses.

The Fleiss-Davies kappa for our classification was 0.66. Readers
unfamiliar with chance-corrected inter-rater reliabilitywill consider
this low, but it is generally accepted that values between 0.4 and
0.75 are “fair to good” [3], and our measure is approaching the high
end of this range.

On examining the classifications it appeared that the greatest
disagreement lay with the application of the not-intro classifica-
tion. There was some disagreement as to whether certain subjects
(notably anthropology, archaeology, and science communication)
should be considered STEM; and more obvious disagreement as to
whether certain courses are genuinely introductory. For example,
our test data includes the courses Comp1110 Structured program-
ming and Comp1140 Structured programming (advanced). Assuming
that Comp1110 is an introductory course, Comp1140 could be either
a follow-on course, and thus clearly not introductory; or a paral-
lel introductory course for students deemed on entry to be more
advanced1. It would often be possible to resolve such ambiguities
by examining the website of the university in question; however,
with nearly 1500 distinct courses to consider (see section 4), we
did not always do this, instead relying on existing knowledge of
the courses where possible, and otherwise on the course codes and
names.

To test the hypothesis that disagreements concerning not-intro
were substantially affecting the kappa value, we replaced every
classification other than not-intro with a generic intro classification
and measured the reliability again; the kappa value was now 0.29,
indicating no real agreement beyond chance and thus supporting
the hypothesis.

In an attempt to eliminate this particular source of disagreement,
we then applied a majority rule to courses for which there was
uncertainty concerning not-intro. If the majority had classified a
course as not-intro, the other classifications were adjusted to not-
intro. Conversely, if a minority had classified a course as not-intro,
those classifications were replaced with the discipline that the ma-
jority had chosen. A third test, on the data adjusted as described,
gave a kappa value of 0.93, high in the excellent agreement band.

These measures establish that we have excellent agreement on
the classification of courses into disciplines, but poor agreement on
which courses should be included in our analysis, generally because
of uncertainty about whether a course is genuinely introductory. If
the pass rate in a non-introductory course is likely to be higher than
in an introductory course, inclusion of non-introductory courses
might inflate the average pass rate, as might exclusion of introduc-
tory courses. The classification of our test courses thus suggests a
possible threat to the validity of our findings.

1Subsequent investigation reveals these two courses to be the same course, with
students attending the same classes, but with some more challenging assessment items
in Comp1140.

3.4 Data Aggregation
To analyse the data, we need to aggregate the pass rates from
the original data set. There are two general ways to calculate an
aggregate over a group of percentages. The terms unweighted and
weighted are used in this context to describe how the percentages
are aggregated.

Unweighted aggregate pass rates are calculated using the per-
centage of students passing each course as a single data point (that
is, dividing the number of students passing a course by the number
of students enrolled in the course). This means that a course with
500 enrolments and an 80% pass rate will have exactly the same
effect on the aggregate data as a course with 50 enrolments and an
80% pass rate. We believe that this approach to aggregation may
better reflect instructor perceptions, since instructors are focused
on course delivery.

A potential limitation of this approach may arise if courses are
recorded in the data for administrative purposes in a way that
differs from the actual delivery of the course. This may occur, for
example, if a single course is divided into multiple streams and
each stream is recorded as a separate course instance; or if a virtual
course offering is created for students with timetable clashes even
when they attend the same course as other students. See also the
footnote in the preceding column. Our data strongly suggest that
these practices are followed at three of the institutions from which
we have large numbers of course offerings for analysis.

Weighted aggregate pass rates are calculated using the raw
numbers of students enrolled and passed in all courses of a given
category (that is, the sum of all students who passed courses in
a given category divided by the sum of all students enrolled in
courses belonging to that category). We believe that this approach
better represents the overall student perspective, since it captures
the total percentage of students who have succeeded in a course
in the subject area. This has the effect of giving more weight to
courses with higher enrolments, but it solves potential issues that
may arise with many small courses being artificially created for
administrative purposes.

We have chosen to present both analyses, but with a preference
for the weighted representation when examining overall trends
since it mitigates the potential impact of organisational and admin-
istrative differences between institutions.

4 RESULTS
Our principal data set comprises data from 17 universities from
eight countries: Australia, Finland, New Zealand, North Macedonia,
Norway, two countries from the UK, and the USA. The set covers
5646 offerings of 1406 distinct courses over the five-year span from
2014 to 2018. Most offerings cover the full five-year span, but there
are exceptions — for example, for courses that were launched or
discontinued during the span. There are 232 course offerings cate-
gorised as introductory programming, and 131 offerings categorised
as cross-disciplinary programming. A total of 990,569 enrolments
were recorded across all courses and institutions, including 92,607
enrolments in introductory programming courses.

We cannot give details of the data from each institution, as that
might encourage attempts to identify the institutions. Instead we
provide descriptive information about the nature and size of the

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

60

Table 4: Minimum, maximum, and median number of
courses, course offerings over five years, and total student
enrolments over five years, for the 17 institutions

min max median

Intro programming
Courses 2 12 3
Course offerings 10 37 20
Enrolments 1,802 11,370 4,414

Other STEM
Courses 1 673 38
Course offerings 10 1,915 204
Enrolments 1,966 138,803 40,029

Table 5: Number of unique courses, distinct offerings of
those courses, and total enrolments in each category

Category Courses Offerings Enrolled

prog-comp 34 232 61,580
prog-other 31 131 31,027
comp 81 398 80,312
maths 193 921 156,824
stats 48 278 74,087
phys 128 506 78,502
chem 113 472 92,309
biol 176 628 133,493
earth 149 517 44,843
psych 26 114 34,802
health 127 385 59,769
eng-ee 45 160 23,444
eng-other 159 622 94,604
other 96 282 24,973

Total 1,406 5,646 990,569

data set. Table 4 shows that data from some institutions is very
broad, comprising hundreds of courses from various STEM fields,
while other institutions provided much more limited data — in one
instance, courses only in programming and mathematics.

Table 5 offers a more detailed breakdown of the data, showing
the numbers of courses, offerings, and enrolments in each subject
category.

4.1 Longitudinal Results
We calculated the overall pass rates for programming courses and
other STEM courses by year for the period 2014–2018. The trends
are shown in figure 1 (unweighted average pass rate per group per
year) and figure 2 (weighted average pass rate per group per year).
Based on the data available to us, the average pass rates for both
programming courses and other STEM courses have been quite
stable, hovering around 75%.

Based on the unweighted aggregate data, introductory program-
ming courses appear to have very similar pass rates to cross-
disciplinary programming courses and other STEM courses. When

70%

75%

80%

85%

2014 2015 2016 2017 2018

prog−comp prog−other stem−other

Figure 1: Unweighted average pass-rate trends for introduc-
tory programming courses and other STEM fields in the pe-
riod 2014–2018

70%

75%

80%

85%

2014 2015 2016 2017 2018

prog−comp prog−other stem−other

Figure 2:Weighted average pass-rate trends for introductory
programming courses and other STEM fields in the period
2014–2018

considering the weighted averages, the pass rate for introductory
programming courses is about the same as the unweighted rate,
but the rates for cross-disciplinary programming and other STEM
courses are substantially higher. This suggests that pass rates in
cross-disciplinary programming and other STEM courses are higher
in courses with higher enrolments. However, this is based only on
the data that we have to hand, and we are not in a position to
speculate on the reasons.

Both the weighted and unweighted measures of introductory
programming are close to the 73% average pass rate identified by
Bennedsen and Caspersen in their 2019 study [5].

4.2 Cross-Category Results
Figure 3 shows the unweighted average pass rate of each of the
disciplines that we have identified in our analysis, and figure 4
zooms in to show the difference (as an absolute percentage) between
each other discipline and introductory programming. The figures
show that introductory programming is fairly centrally placed, with
four disciplines having higher unweighted average pass rates and
nine having lower rates. The colour scheme used in these figures
is consistent in all subsequent figures: light grey for the reference
category prog-comp, orange for the categories having pass rates
above the reference, and purple for the categories having pass rates
below the reference.

Interestingly, two of the four categories with higher pass rates
than introductory programming are the other computing categories,
the remaining two being psychology and health.

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

61

75.3%
75.9%
77.5%

69.7%
72.5%
73.8%

70.8%
74.7%
72.5%

83.4%
79.8%

74.0%
73.1%
74.4%other

eng−other
eng−ee
health
psych
earth
biol
chem
phys
stats
maths
comp

prog−other
prog−comp

0% 25% 50% 75% 100%

Figure 3: Unweighted pass rates by category with all cate-
gories represented (the comparison line indicates the pass
rate in prog-comp)

0.7%
2.2%

−5.6%
−2.8%

−1.4%
−4.4%

−0.6%
−2.7%

8.1%
4.6%

−1.3%
−2.2%

−0.8%other
eng−other
eng−ee
health
psych
earth
biol
chem
phys
stats
maths
comp

prog−other

−5% 0% 5% 10% 15%

Figure 4: Differences betweenunweighted pass rates in other
STEMcourses and introductory programming courses (other
course – prog-comp)

A different picture is painted when we consider the weighted
average pass rates per category. Figures 5 and 6 show that all STEM
courses except mathematics and statistics have higher weighted
average pass rates than introductory programming courses. In both
the unweighted and the weighted data, mathematics and statistics
courses have lower pass rates than introductory programming
courses.

4.3 Institutional Results
Although aggregating pass rates across all institutions provides re-
sults that can be compared with related work, we hypothesised that
there would be substantial differences between institutions. Given
the anticipated impact of local context, we believe that it is im-
portant to compare introductory programming courses with other
STEM courses at the same institution. Figure 9 shows a box plot of
the unweighted pass rates for STEM courses at each institution, and
the unweighted pass rate for introductory programming courses
(represented as a circle); and figure 10 breaks down the pass rates

76.0%
81.9%
80.0%

72.2%
74.8%

80.3%
78.0%

84.3%
81.7%

88.3%
82.1%
79.5%
81.5%

87.6%other
eng−other
eng−ee
health
psych
earth
biol
chem
phys
stats
maths
comp

prog−other
prog−comp

0% 25% 50% 75% 100%

Figure 5: Weighted pass rates by category with all categories
represented (the comparison line indicates the pass rate in
prog-comp)

5.9%
4.0%

−3.8%
−1.2%

4.4%
2.1%

8.3%
5.7%

12.3%
6.1%

3.6%
5.6%

11.6%other
eng−other
eng−ee
health
psych
earth
biol
chem
phys
stats
maths
comp

prog−other

−5% 0% 5% 10% 15%

Figure 6: Differences between weighted pass rates in other
STEM courses and introductory programming courses in
computing (other course – prog-comp)

from each university into disciplines. It is clear that disciplinary
pass rates vary substantially between institutions.

A close examination of figure 10 shows that psychology is the
only category whose pass rate is higher at every institution than
introductory programming. For every other category there is at
least one institution where that category has a lower pass rate than
introductory programming. However, it is clear that the majority
of subject categories at universities (138 of 166 data points) have
higher pass rates than introductory programming.

4.4 Course Sizes and Pass Rates
Since some of the prior work found differences in pass rates in
relation to class sizes, we ran Spearman’s correlation to investigate
the relation between course size (as measured by enrolments) and
pass rates. In the case of introductory programming courses, we
found no significant correlation between course size and pass rate,
as can be seen in figure 7.

Similar investigation for the other course categories found a
significant slightly positive monotonic correlation in the general

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

62

Rs = 0.027 , p = 0.68

0%

25%

50%

75%

100%

0 500 1000 1500 2000

Figure 7: Relationship between course size (number of enrol-
ments) and pass rate of introductory programming courses,
measured using Spearman’s rank correlation

case, but interestingly, the larger the course, the higher the pass
rate, as shown in figure 8.

Rs = 0.15 , p < 0.001

0%

25%

50%

75%

100%

0 500 1000 1500 2000

Figure 8: Relationship between course size (number of en-
rolments) and pass rate of introductory courses in STEM ex-
cluding introductory programming, measured using Spear-
man’s rank correlation

Further analysis is provided in figures 11 and 12, which show the
relationship between course size and pass rate for each institution,
for introductory programming courses and for other STEM courses
respectively. The correlation between course size and pass rate
for introductory programming courses is significant at six of the
institutions, of which three show positive correlations and three
negative. For other STEM subject areas, the correlation between
course size and pass rate is significant at nine of the 17 institutions,
with only two having positive correlations and seven negative. This
may suggest that in many places, fewer students pass as STEM
courses grow larger, but this is not typically the case for introduc-
tory programming courses. This may also explain the difference
observed between the weighted and unweighted analyses.

4.5 Survey Data
As indicated earlier, the responses to the survey are so few and so
varied in detail that they cannot be usefully analysed. Instead we
provide here a brief description of the responses received. Class

sizes are rounded in the descriptions to help preserve the anonymity
of the respondents’ institutions.

One of the ten responses gives the pass rate for a single course,
but with insufficient description for us to determine in which disci-
pline (table 3) the course lies.

At the other extreme, a response from the UK provides pass
rates for introductory programming (250 students, 93% passed),
physics (150, 81%), mathematics (150, 92%), and biology (250, 96%).
Withdrawal is not really a meaningful concept in these courses, as
it would entail withdrawal from the entire program of study, so all
students who did not pass the courses failed them.

Two responses provide pass rates in programming and one other
STEM discipline. A response from Australia shows withdrawal
rates of about 20%, and gives pass rates in terms both of original
enrolment and of students who did not withdraw. The courses are
programming (350 students, 52%/65% passed) and chemistry (650,
63%/82%). A response from the USA shows withdrawal rates a little
under 10% and gives pass rates for programming (450 students, 79%)
and mathematics (600, 81%).

One response from Germany covers one programming course
and one comp-other course, in databases. The withdrawal rates here
are far higher than in the other responses, 60% in programming
and 40% in databases, and the pass rates are very low: 22% of 1500
students in programming and 35% of 700 students in databases.

The remaining responses, all from the USA, give figures only for
one or more introductory programming courses, and so provide no
basis for comparison with other introductory STEM courses. The
nine pass rates from these five responses are 65%, 71%, 75%, 83%,
85%, 90%, 91%, 92%, and 92%. Class sizes range from 10 to 350, and
withdrawal rates are all less than 10%.

While these responses are too few to give the snapshot of current
pass rates that we hoped to elicit, they nevertheless manage to
encapsulate the substantial problem of comparability of pass rates.
How is it meaningful to compare pass rates from around the world
– or to present their averages, as we have done in this report –
when the courses themselves are offered, presented, and assessed
on such different bases? How are we to compare the introductory
programming pass rates in the UK, where students take most or all
of their courses as mandatory components of their chosen degree;
in Australia, where withdrawal is a standard technique to avert the
award of a fail grade in a course; and in Germany, where courses
can be selected almost on a trial basis and dropped without penalty?

5 DISCUSSION
In this section we reflect on the questions that we sought to answer:

RQ1 What are the current pass rates in a selection of introductory
programming courses around the world?

RQ2 How do the pass rates in introductory programming courses
compare with those in other introductory STEM courses?

RQ3 What trends, if any, can be discerned in pass rates in intro-
ductory programming courses over the past five years?

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

63

0%

20%

40%

60%

80%

100%

U
niv

er
si
ty

 A

U
niv

er
si
ty

 B

U
niv

er
si
ty

 C

U
niv

er
si
ty

 D

U
niv

er
si
ty

 E

U
niv

er
si
ty

 F

U
niv

er
si
ty

 G

U
niv

er
si
ty

 H

U
niv

er
si
ty

 I

U
niv

er
si
ty

 J

U
niv

er
si
ty

 K

U
niv

er
si
ty

 L

U
niv

er
si
ty

 M

U
niv

er
si
ty

 N

U
niv

er
si
ty

 O

U
niv

er
si
ty

 P

U
niv

er
si
ty

 Q

Figure 9: Unweighted pass rates by institution for introductory programming (prog-comp: large circles) and other STEMcourses

5.1 Current Pass Rates in a Selection of
Introductory Programming Courses around
the World

In our analysis, introductory programming courses have an aver-
age pass rate of around 75% (75.3% for the unweighted average
and 76.0% for the weighted average). This average is only slightly
higher than that reported in the most recent analysis of pass rates
by Bennedsen and Caspersen [5], despite the data sources and data
collection process being very different. Most of the data collected
in the Bennedsen and Caspersen study [5] derived from US institu-
tions, while most of the data reported in this paper is obtained from
institutions in other countries. Triangulating the pass rates through
data collected from very different sources, and finding very little
difference in the average pass rates, provides some confidence in
these findings.

Figures 13 and 14 show that pass rates in cross-disciplinary
programming courses (prog-other) are somewhat higher than in in-
troductory programming courses delivered to computing students.
This is an interesting finding, replicated across both weighted and
unweighted comparisons. We can speculate as to why this might
be the case: typically, cross-disciplinary programming courses are

considerably more practically oriented and goal-focused, with the
intention of training participants in the use of a language or frame-
work to achieve specific goals in their particular context. Compare
this with the typically broad and theoretical basis of introductory
programming found in computing, focused as much on instilling
concepts as on practical skills, and one can imagine that these
courses might be more difficult to grasp. It is also possible that the
expected standard of attainment is lower in cross-disciplinary pro-
gramming courses than in courses designed to teach programming
to students who will need to further develop their knowledge in
subsequent courses. Another speculation that can be made is that
almost every computing program will have its introductory pro-
gramming course in the first year, whereas programming courses
in other STEM areas may be taken by more experienced students
in later years of study, possibly boosting the pass rates in those
courses.

However, while these suggestions are interesting, they are purely
speculative. We can tell little about these programming courses for
other disciplines except that they appear to have higher pass rates
than introductory courses for computing students. This might be
an interesting topic for future investigation.

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

64

16%

6%

19%

13%

18%

18%

16%

7%

17%

4%

10%

0%

−20%

18%

10%

−2%

3%

20%

19%

7%

16%

8%

17%

23%

−1%

−2%

17%

12%

15%

−4%

7%

8%

23%

9%

15%

15%

8%

12%

17%

13%

16%

18%

9%

5%

0%

−1%

2%

6%

16%

14%

−1%

19%

6%

9%

−1%

10%

11%

12%

13%

−1%

7%

4%

9%

8%

1%

4%

−7%

−8%

−4%

−2%

6%

4%

6%

8%

14%

15%

1%

0%

3%

16%

−0%

−2%

−2%

−5%

−4%

−7%

4%

−3%

−1%

2%

2%

8%

14%

4%

−7%

1%

0%

2%

9%

9%

2%

5%

−1%

−0%

5%

6%

−1%

8%

−1%

18%

14%

9%

25%

13%

23%

29%

10%

17%

3%

17%

10%

16%

15%

6%

17%

8%

18%

0%

14%

10%

13%

10%

3%

−11%

−9%

−4%

3%

−14%

−9%

−15%

2%

−17%

2%

−10%

−0%

14%

6%

14%

15%

11%

2%

9%

11%

5%

−2%

11%

−6%

9%

4%

13%

−7%

16%

3%

1%

21%

5%

University M University N University O University P University Q

University G University H University I University J University K University L

University A University B University C University D University E University F

−30% 0% 30% −30% 0% 30% −30% 0% 30% −30% 0% 30% −30% 0% 30%

−30% 0% 30%

other

eng−other

eng−ee

health

psych

earth

biol

chem

phys

stats

maths

comp

prog−other

other

eng−other

eng−ee

health

psych

earth

biol

chem

phys

stats

maths

comp

prog−other

other

eng−other

eng−ee

health

psych

earth

biol

chem

phys

stats

maths

comp

prog−other

Figure 10: Differences between weighted pass rates in other STEM areas and introductory programming, for each university;
a near-zero difference in pass rate is represented by a very thin bar (e.g., stats at University A or maths at University Q) and
a percentage; the absence of a coloured bar and percentage means that we have no data for courses in that discipline at that
university

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

65

Rs = −0.077 , p = 0.8

Rs = −0.31 , p = 0.27

Rs = 0.48 , p = 0.17

Rs = 0.69 , p = 0.0058**

Rs = 0.71 , p = 0.019*

Rs = −0.49 , p = 0.012*

Rs = −0.56 , p = 0.056

Rs = −0.32 , p = 0.16

Rs = 0.56 , p = 0.32

Rs = 0.93 , p < 0.001***

Rs = 0.067 , p = 0.85

Rs = 0.2 , p = 0.4

Rs = 0.9 , p = 0.083

Rs = −0.63 , p = 0.011*

Rs = −0.87 , p < 0.001****

Rs = 0.027 , p = 0.95

Rs = −0.051 , p = 0.84
University P University Q

University M University N University O

University J University K University L

University G University H University I

University D University E University F

University A University B University C

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Figure 11: Relationships between course size (number of enrolments) and pass rate of introductory programming courses
measured using Spearman’s rank correlation (significance level denoted by asterisks: * for p < 0.05; ** for p < 0.01; *** for
p < 0.001; and **** for p < 0.0001)

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

66

Rs = 0.21 , p = 0.0022**

Rs = −0.031 , p = 0.67

Rs = −0.048 , p = 0.6

Rs = 0.041 , p = 0.58

Rs = −0.03 , p = 0.66

Rs = −0.29 , p < 0.001****

Rs = 0.047 , p = 0.55

Rs = −0.34 , p < 0.001****

Rs = 0.088 , p = 0.12

Rs = −0.21 , p = 0.016*

Rs = −0.38 , p < 0.001****

Rs = −0.45 , p = 0.19

Rs = −0.44 , p < 0.001****

Rs = −0.092 , p = 0.16

Rs = −0.15 , p < 0.001***

Rs = 0.079 , p < 0.001***

Rs = −0.2 , p = 0.0022**
University P University Q

University M University N University O

University J University K University L

University G University H University I

University D University E University F

University A University B University C

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Figure 12: Relationships between course sizes (number of enrolments) and pass rates for introductory courses in other STEM
areas measured using Spearman’s rank correlation (significance level denoted by asterisks: * for p < 0.05; ** for p < 0.01; ***
for p < 0.001; and **** for p < 0.0001)

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

67

75.3%

75.9%

73.6%stem−other

prog−other

prog−comp

0% 25% 50% 75% 100%

Figure 13: Unweighted average pass rates for introductory
programming, cross-disciplinary programming, and other
STEM fields

76.0%

81.9%

79.6%stem−other

prog−other

prog−comp

0% 25% 50% 75% 100%

Figure 14: Weighted average pass rates for introductory
programming, cross-disciplinary programming, and other
STEM fields

5.2 Pass Rates in Introductory Programming
Courses Compared with those in other
Introductory STEM Courses

Figures 2 and 14 suggest that, weighted by student numbers, the
average pass rate in introductory programming is somewhat lower
than that in the rest of STEM. Figures 5 and 6 indicate that among
specific STEM categories, only mathematics and statistics have
lower weighted average pass rates than introductory programming.
Furthermore, as indicated by figure 10, introductory programming
has the lowest weighted average pass rate of any STEM area at five
of the 17 participating institutions, and is in the bottom half for all
but three institutions.

For further examination of figure 10, we define pass rates at
an institution to be balanced if the average of all the weighted
differences from prog-comp is less than 3%. By this criterion, univer-
sities C, D, O, and Q can be considered balanced. Of the remaining
13 institutions, only institution K has pass rates for introductory
programming courses that are substantially higher than for other
course categories. At the remaining 12 institutions, pass rates for
introductory programming courses are substantially lower than for
other course categories.

At the level of individual disciplines, mathematics, statistics and
introductory programming are generally the three STEM fields
with considerably lower pass rates than other STEM fields. One
possible explanation for the lower pass rates could be that these
three are commonly offered as service courses to be taken as minor
subjects by students in other disciplines. For example, it might be
more likely for biology students to take mathematics as a minor
than for mathematics students to take biology as a minor.

Ultimately, though, as can be seen in figures 13 and 14, there is no
great difference in pass rates between introductory programming
and the rest of STEM. As a consequence, perhaps the community’s
attentions on the difficulty of delivering introductory programming
courses are incorrectly directed, given that STEM disciplines on the
whole appear to have similar pass rates. Perhaps instead of trying

to change our approaches to teaching the introductory program-
ming course, universities should focus on strengthening the skills
required throughout STEM to improve outcomes across the board.

We acknowledge reports of the impact on pass rates of particular
practices, innovations, or interventions. In computing, the positive
impact of peer instruction (PI) [33] on four different courses span-
ning 16 PI course offerings over 10 years of instruction showed
that course failure rates were reduced substantially when PI was
used (from a failure rate of 24% using traditional delivery to 10%
using peer instruction). Similarly, the use of pair programming in
computing [29] has shown positive results, with students working
in pairs significantly more likely to complete the course (91% versus
80%) and more likely to pass the course (73% versus 63%). Although
looking at pass rates in general gives an overview of how the pass
rates of programming may be experienced by instructors and stu-
dents alike, it is worth noting that there are teaching approaches
that may impact substantially on course pass rates. Further work
that focuses on the relationship between course delivery and pass
rate within institutional contexts would be interesting.

5.3 Trends in Pass Rates in Introductory
Programming Courses over the Past Five
Years

The original pass rate reported by Bennedsen and Caspersen [4]
was 67%, while the more recent replication of the study [5] reported
73%, an increase of 6% over a 15-year period. Although this suggests
an increasing trend, we found that the pass rates remained quite
stable over the most recent five years (figure 1). There are several
possible explanations for the difference in trends.

One possible explanation is that the data analysed in this study is
from a time period that is too short to display trends. For example,
the difference observed between our studies might be explained by
a significant change in the delivery of introductory programming
courses, or among the student cohorts enrolling in those courses,
at some point between 2007 and 2014. An alternative explanation
is that the data sources for the two studies by Bennedsen and
Caspersen were different, so the studies have differences due to
variation between the populations that contributed data, while
our study reports longitudinal data from individual institutions.
While the previously reported increase in pass rates may lead to
speculation about grade inflation, we do not see evidence of an
increase in pass rates in introductory programming courses or in
other STEM courses over the past five years.

The differences between weighted and unweighted comparisons
of the data have been described in section 4. This distinction was
maintained throughout the discussion of the results in order to
ensure that multiple interpretations of the data can be considered.
One might assume that the fairest way to present this data would
be to use the weighted aggregates only, letting every individual
student pass carry the same weight. On the other hand, this would
allow courses with high enrolments and perhaps non-normally
distributed grades to skew data in ways that are of interest, but that
do not represent the aggregates across course-level performance.
This ignores a level of nuance offered by the unweighted data, effec-
tively overwhelming the results observed in offerings with lower

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

68

**** ** ** * **** **** ***

0%

20%

40%

60%

80%

100%

pr
og
−c
om
p

pr
og
−o
th
er

co
m
p

m
at
hs

st
at
s

ph
ys

ch
em bi

ol

ea
rt
h

ps
yc
h

he
al
th

en
g−
ee

en
g−
ot
he
r

ot
he
r

Figure 15: Unweighted pass rates by categories, comparing prog-comp with each other category (significance level denoted by
asterisks: * for p < 0.05; ** for p < 0.01; *** for p < 0.001; and **** for p < 0.0001)

enrolments. Thus we saw value in working with and reporting on
both forms of the data.

5.4 Further Observations
The authors of this report experienced considerable trouble obtain-
ing the data required to compare pass rates. In some countries, such
as Norway, the pass rates for individual courses are a matter of
public record and are accessible through a public web interface. In
other countries, such as New Zealand, pass rates at the course level
are reported nationally and are available upon request in anony-
mous aggregate form. However, in many countries information
about pass rates is very difficult to access, being perceived to be
both academically sensitive and commercially sensitive.

Although for some institutionswe had access to fine-grained data
such as grade breakdowns, gender data, and/or data on majors, we
were unable to use this data in our analysis since it was important
to be able to report measurements as consistently as possible across
the institutions. Attrition rate is another data set that would have
been of particular interest. This might have helped to explain some
of the larger gaps in aggregate pass rates between different subject
areas, but the data was not available from enough institutions to
permit such analysis.

Although we have reported pass rates calculated by aggregating
the data, we appreciate that there is limited value in aggregating
data on pass rates collected from very different contexts. For exam-
ple, if one institution has a culture of offering free education to all
citizens with no restrictions on entry, and subsequently reports a
pass rate of 50%, while another institution has highly competitive
entry criteria and reports a pass rate of 80%, how meaningful is it
to report an average pass rate of 65%? Studies that report data that
is aggregated across different contexts need to explicitly acknowl-
edge the impact of the aggregation. The studies by Bennedsen and
Caspersen [4, 5] and Watson and Li [35] all aggregate data without

addressing the different contexts of the institutions that provided
the data. It is difficult to interpret average pass rates of a single
course such as introductory programming, so our comparison with
other courses in the same institution acts as a control for some of
the cultural and institutional factors that may bias the findings.

6 THREATS TO VALIDITY
The authors of this paper collected data from their own institutions.
In some cases, the authors were involved in one or more of the
introductory programming courses that appeared in the data set,
which might indicate a bias in the data similar to that of previous
research on pass rates [4, 5, 35], where the data was sourced from
people involved in the computing education community. However,
in this study the authors taught only a fraction of the 232 introduc-
tory programming course offerings recorded in the data collection,
which limits the potential bias of course selection.

The quantitative results presented in this report are accurate for
the data that we have gathered. However, although we have up to
five years’ data from 17 institutions in eight countries, we have no
evidence that our data set is representative of introductory courses
world-wide.

Even for the few institutions from which we have data, the
variability in terminology and in marking and grading practices
lead us to conclude that there is no single uniform understanding
of what it means to pass a course. This particular threat to validity
applies equally to prior work on pass or failure rates in introductory
programming courses, notably that of Bennedsen and Caspersen
[4, 5] and Watson and Li [35], and also more broadly to literature
on pass rates in STEM courses.

The collected data did not include course categories. The authors
classified the courses in the data set based on the course titles,
course codes, and institutions that offered the course. Coming from
computing, the authors are not experts in the fields corresponding

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

69

to the chosen set of categories, and so were unlikely to be 100%
accurate. Furthermore, each course offering can deviate from its
curriculum depending on the prioritisation of the course topics by
the teacher, and the competencies/needs of the majority of students
enrolled in the course, in that year.

As indicated in section 3.3, the decision about whether a course
is an introductory STEM course is subject to error, and we have no
way of knowing the extent, if any, to which this might have skewed
our findings.

7 CONCLUSIONS AND FUTUREWORK
This ITiCSE working group set out to compare pass rates in in-
troductory programming courses with those in other introductory
STEM courses, by way of both a current snapshot from many insti-
tutions and five years of longitudinal data from a smaller number
of institutions.

The intended current snapshot is based on data from only a
small number of institutions. Our survey elicited only ten responses,
which are so few in number, and so different from the remainder
of our data set, that we could not meaningfully include them in
our analysis. Our remaining data, while covering more than 200
offerings of introductory programming courses, is limited by com-
ing from only 17 institutions. Even so, it suggests an average pass
rate of close to 75%, which is not far removed from that in the most
recent work of Bennedsen and Caspersen [5], despite coming from
a very different global distribution of institutions.

The comparison with other STEM courses is perhaps the greatest
contribution of the paper. Covering more than 5000 offerings of
many hundreds of STEM courses, our data set appears to permit
a reasonable comparison, over the past five years, of pass rates in
introductory programming with those in other introductory STEM
courses.

On the broadest scale, we found the pass rates in both introduc-
tory programming courses and other introductory STEM courses
to be reasonably consistent over the five years, at values very close
to 75%. This contributes to knowledge in this field by confirming
similar findings to those reported by other authors.

At the scale of individual institutions, we found that there is a
slight tendency for pass rates in introductory programming courses
to be at the lower end of the range of STEM pass rates, but not
substantially lower than in several other disciplines. This was not
sufficiently strong to warrant the general belief that programming
is hard to learn and programming is hard to teach. While authors
of computing education papers have for decades perpetuated the
belief that introductory programming course are hard to pass (in
comparison, presumably, with other courses), we have established
that it is neither possible nor meaningful to measure this precisely;
but that the imprecise work we have done suggests that the belief
is ill founded.

In many countries, computing is currently being introduced at
various primary and secondary school levels. It would be interesting
to replicate the study in some five years or so, to assess whether this
has led to a measurable change. Such a further study might also be
designed from the outset to seek additional data, such as on gender
and whether the students are from the country of study or from
other countries. While it would be interesting to have included

an analysis of such data in the current study, we did not initially
request the data, and it would now be too challenging to go back
and try to acquire it.

At the risk of oversimplifying, this paper finds no evidence that
pass rates for introductory programming courses are substantially
lower than for other STEM courses. The authors of this report
would find it gratifying if in future they were able to discern a
reduction in the number of computing education papers that be-
gin with the sentiment ‘introductory programming courses are
hard to pass’. However, the pass rates that we found clearly leave
scope for improvement in the teaching and learning of introductory
programming, and future research should continue to investigate
approaches that might enhance our understanding and delivery of
introductory programming courses.

ACKNOWLEDGMENTS
We thank the ten people who responded to our anonymous survey;
we do understand that the data we sought was not easy to obtain.
We are particularly grateful to Madeleine Lorås, who was prevented
by circumstances from joining the working group, but nevertheless
contributed substantially to its work.

REFERENCES
[1] 2019. Higher Education Statistics Agency (HESA). https://www.hesa.ac.uk/news/

07-03-2019/non-continuation-tables. Accessed 13 Jul 2019.
[2] Gillian Bain and Ian Barnes. 2014. Why is programming so hard to learn?. In 19th

Conference on Innovation & Technology in Computer Science Education (ITiCSE
2014). ACM, 356–356.

[3] Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney, and Debajyoti Sinha.
1999. Beyond kappa: a review of interrater agreement measures. Canadian
Journal of Statistics 27, 1 (1999), 3–23. https://doi.org/10.2307/3315487

[4] Jens Bennedsen and Michael E Caspersen. 2007. Failure rates in introductory
programming. SIGCSE Bulletin 39, 2 (June 2007), 32–36. https://doi.org/10.1145/
1272848.1272879

[5] Jens Bennedsen and Michael E Caspersen. 2019. Failure rates in introductory
programming: 12 years later. ACM Inroads 10, 2 (April 2019), 30–36. https:
//doi.org/10.1145/3324888

[6] Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the role
of self-regulated learning on introductory programming performance. In First
International Workshop on Computing Education Research (ICER 2005). ACM,
81–86.

[7] Richard Bornat, Saeed Dehnadi, and Simon. 2008. Mental models, consistency
and programming aptitude. In 10th Australasian Computing Education Conference
(ACE 2008). Australian Computer Society, Inc, 53–61. http://dl.acm.org/citation.
cfm?id=1379249.1379253

[8] Roger Boyle, Janet Carter, and Martyn Clark. 2002. What makes them succeed?
Entry, progression and graduation in computer science. Journal of Further and
Higher Education 26, 1 (2002), 3–18.

[9] Elisabeth Chapman, Elisabeth M Wultsch, Jan DeWaters, John C Moosbrugger,
Peter R Turner, Michael W Ramsdell, and Robert P Jaspersohn. 2015. Innovating
engineering curriculum for first-year retention. In 122nd ASEE Annual Conference,
Seattle WA. 26.967.1–26.967.24.

[10] Xianglei Chen. 2013. STEM attrition: college students’ paths into and out of STEM
fields. Statistical analysis report. NCES 2014-001. National Center for Education
Statistics (2013), 1–96.

[11] Alison Clear, Janet Carter, Amruth Kumar, Cary Laxer, Simon, and Ernesto
Cuadros-Vargas. 2015. Global perspectives on assessing educational performance
and quality. In 20th Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2015). ACM, 326–327. https://doi.org/10.1145/2729094.2754843

[12] Alison Clear and Tony Clear. 2014. Introductory programming and educational
performance indicators – a mismatch. In 2014 ITx Conference (ITx 2014). CITRENZ,
New Zealand, 123–128.

[13] Mark Davies and Joseph L Fleiss. 1982. Measuring agreement for multinomial
data. Biometrics 38, 4 (1982), 1047–1051. http://www.jstor.org/stable/2529886

[14] Peter J Denning. 2005. Is computer science science? Communications of the ACM
48, 4 (April 2005), 27–31. https://doi.org/10.1145/1053291.1053309

[15] Ronald G Ehrenberg. 2010. Analyzing the factors that influence persistence rates
in STEM field, majors: Introduction to the symposium. Economics of Education
Review 29, 6 (2010), 888 – 891.

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

70

https://www.hesa.ac.uk/news/07-03-2019/non-continuation-tables
https://www.hesa.ac.uk/news/07-03-2019/non-continuation-tables
https://doi.org/10.2307/3315487
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/3324888
https://doi.org/10.1145/3324888
http://dl.acm.org/citation.cfm?id=1379249.1379253
http://dl.acm.org/citation.cfm?id=1379249.1379253
https://doi.org/10.1145/2729094.2754843
http://www.jstor.org/stable/2529886
https://doi.org/10.1145/1053291.1053309

[16] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. 2014. Identifying com-
puter science self-regulated learning strategies. In 19th Conference on Innovation
& Technology in Computer Science Education (ITiCSE 2014). ACM, 291–296.

[17] Scott Freeman, Sarah L Eddy, MilesMcDonough, Michelle K Smith, Nnadozie Oko-
roafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning increases
student performance in science, engineering, and mathematics. Proceedings of
the National Academy of Sciences 111, 23 (2014), 8410–8415.

[18] Scott Freeman, David Haak, and Mary Pat Wenderoth. 2011. Increased course
structure improves performance in introductory biology. CBE – Life Sciences
Education 10, 2 (Summer 2011), 175–186.

[19] Mark Guzdial. 2010. Why is it so hard to learn to program? In Making Software:
What Really Works, and Why We Believe It, Andy Oram and Greg Wilson (Eds.).
O’Reilly Media, 111–124.

[20] Mark Guzdial. 2019. A biased attempt at measuring failure rates in introductory
programming. https://computinged.wordpress.com/tag/failure-rates/.

[21] Rashina Hoda and Peter Andreae. 2014. It’s not them, it’s us! Why computer
science fails to impressmany first years. In 16th Australasian Computing Education
Conference (ACE 2014). Australian Computer Society, Inc, 159–162. http://dl.acm.
org/citation.cfm?id=2667490.2667509

[22] Philip R Ventura Jr. 2005. Identifying predictors of success for an objects-first
CS1. Computer Science Education 15, 3 (2005), 223–243.

[23] Päivi Kinnunen and Lauri Malmi. 2006. Why students drop out CS1 course?.
In Second International Workshop on Computing Education Research (ICER 2006).
ACM, 97–108. https://doi.org/10.1145/1151588.1151604

[24] Päivi Kinnunen and Lauri Malmi. 2008. CS Minors in a CS1 Course. In Fourth
International Workshop on Computing Education Research (ICER 2008). ACM,
79–90.

[25] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of
the difficulties of novice programmers. SIGCSE Bulletin 37, 3 (June 2005), 14–18.
https://doi.org/10.1145/1151954.1067453

[26] Caroline Liron andHeidiM Steinhauer. 2015. Analyzing longitudinal performance
from multi-course alignment for 1st year engineering students: calculus, physics,
and programming in MATLAB. In 122nd ASEE Annual Conference, Seattle WA.
26.216.1–26.216.10.

[27] Andrew Luxton-Reilly. 2016. Learning to program is easy. In 21st Conference on
Innovation and Technology in Computer Science Education (ITiCSE 2016). ACM,
284–289. https://doi.org/10.1145/2899415.2899432

[28] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A Becker, Michail Gian-
nakos, Amruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, and Claudia Szabo. 2018. Introductory programming: a systematic liter-
ature review. In ITiCSE 2018 Working Group Reports (ITiCSE-WGR 2018). ACM,
55–106. https://doi.org/10.1145/3293881.3295779

[29] Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fernald. 2003.
The impact of pair programming on student performance, perception and persis-
tence. In 25th International Conference on Software Engineering (ICSE 2003). IEEE
Computer Society, 602–607.

[30] Dale Parsons, Krissi Wood, and Patricia Haden. 2015. What are we doing when we
assess programming?. In 17th Australasian Computing Education Conference (ACE
2015). Australian Computer Society, Inc, 119–127. http://crpit.com/confpapers/
CRPITV160Parsons.pdf

[31] Alan R Peterfreund, Kenneth A Rath, Samuel P Xenos, and Frank Bayliss. 2008.
The impact of supplemental instruction on students in STEM courses: results
from San Francisco State University. Journal of College Student Retention: Re-
search, Theory & Practice 9, 4 (2008), 487–503. https://doi.org/10.2190/CS.9.4.e
arXiv:https://doi.org/10.2190/CS.9.4.e

[32] Victor Pigott and Denise Frawley. 2019. An analysis of completion in Irish higher
education: 2007/08 entrants. Higher Education Authority (2019).

[33] Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013. Halving fail rates using
peer instruction: a study of four computer science courses. In 44th ACM Technical
Symposium on Computer Science Education (SIGCSE 2013). ACM, 177–182.

[34] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: a review and discussion. Computer Science Education 13,
2 (2003), 137–172.

[35] Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory pro-
gramming revisited. In 19th Conference on Innovation & Technology in Computer
Science Education (ITiCSE 2014). ACM, 39–44. https://doi.org/10.1145/2591708.
2591749

Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk

71

https://computinged.wordpress.com/tag/failure-rates/
http://dl.acm.org/citation.cfm?id=2667490.2667509
http://dl.acm.org/citation.cfm?id=2667490.2667509
https://doi.org/10.1145/1151588.1151604
https://doi.org/10.1145/1151954.1067453
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3293881.3295779
http://crpit.com/confpapers/CRPITV160Parsons.pdf
http://crpit.com/confpapers/CRPITV160Parsons.pdf
https://doi.org/10.2190/CS.9.4.e
http://arxiv.org/abs/https://doi.org/10.2190/CS.9.4.e
https://doi.org/10.1145/2591708.2591749
https://doi.org/10.1145/2591708.2591749

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pass/Fail Rates in Introductory Programming Courses
	2.2 Pass/Fail Rates in other STEM Disciplines
	2.3 National Data on Attrition Rates in Computing and other STEM Disciplines

	3 Method
	3.1 Unified Data Set
	3.2 Terminology
	3.3 Data Categorisation
	3.4 Data Aggregation

	4 Results
	4.1 Longitudinal Results
	4.2 Cross-Category Results
	4.3 Institutional Results
	4.4 Course Sizes and Pass Rates
	4.5 Survey Data

	5 Discussion
	5.1 Current Pass Rates in a Selection of Introductory Programming Courses around the World
	5.2 Pass Rates in Introductory Programming Courses Compared with those in other Introductory STEM Courses
	5.3 Trends in Pass Rates in Introductory Programming Courses over the Past Five Years
	5.4 Further Observations

	6 Threats to Validity
	7 Conclusions and Future Work
	Acknowledgments
	References

