
Addressing mixed levels of prior knowledge by individualising
learning pathways in a Degree Apprenticeship Summer School

Derek Somerville, �intin Cu�s, Ma�hew Barr, Jack Parkinson
University of Glasgow

Glasgow, UK
(Derek.Somerville,�intin.Cu�s,Ma�hew.Barr,Jack.Parkinson)@glasgow.ac.uk

ABSTRACT
Teaching an introductory programming course is beset by two core
challenges: students enter the course with di�erent levels of prior
experience; and, for whatever reason, they progress at di�erent
rates. �is is at odds with a typical face-to-face course, where mate-
rial is delivered to the whole class in a lock-step fashion. Addressing
these two challenges lies at the heart of an eight-week Summer
School, described here, designed to bring a broad intake of students
up to a common level ready to start on an degree apprenticeship
programme that assumes a certain level of programming ability at
the outset.

A programming test of students’ understanding of programming
constructs (e.g. conditional logic, loops, methods etc) allowed us to
select for whom the course was mandatory, but it was open to all.
Successful completion of the Summer School required students to
demonstrate mastery of nine competencies. Each competency had
an initial test, if the student did not meet the required level they
were asked to complete coursework using Jupyter Notebooks. If
the student passed the initial test they moved straight to the �nal
test and if they passed, they moved to the next competency. �ere
were also practice quizzes for students to do before the �nal test.
�is provided an individualised learning pathway for the students.

Students improved in the programming test and have given
favourable reviews of the Summer School in a focus group.

CCS CONCEPTS
•�eory of computation→Apprenticeship learning; •Applied
computing→ Education; E-learning; •So�ware and its engi-
neering→ General programming languages;

KEYWORDS
Python, Introduction, Programming, Degree Apprenticeship, Grad-
uate Apprenticeship
ACM Reference format:
Derek Somerville, �intin Cu�s, Ma�hew Barr, Jack Parkinson. 2020. Ad-
dressing mixed levels of prior knowledge by individualising learning path-
ways in a Degree Apprenticeship Summer School. In Proceedings of Durham
’20: ACM Computing Education Practice, Durham, UK, January, 2020, 5 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Durham ’20: ACM Computing Education Practice, Durham, UK
© 2020 ACM. 978-1-4503-9999-9/18/06. . . $15.00

1 INTRODUCTION
�e University of Glasgow launched its �rst Graduate Apprentice-
ship degree programme in 2019-20 [1], choosing to do so with
the subject of So�ware Engineering. �e School of Computing
Science at the University partnered with local businesses across
Glasgow to recruit candidates via the company’s own recruitment
process. �e 2019-20 cohort includes students with a broad range
of computing science experience from a Higher National Diploma
(HND) and Highers (one of the Sco�ish national school-leaving
certi�cate exams and university entrance quali�cations) to li�le or
no computing science experience.

�is paper describes a Summer School developed in the context
of a degree apprenticeship programme in So�ware Engineering.
�e programme expects apprentices to have reached a certain level
of mastery in programming before starting. Given the wide range
of apprentices recruited by partner companies onto the programme,
the Summer School must be e�ective across these ability levels to
ensure that the whole cohort are suitably prepared by the �rst day
of the programme.

�e team at the university used a programming and problem
solving test with all apprentices to determine who should a�end
the Summer School prior to beginning the undergraduate degree
programme. To ensure all students could participate in the Summer
School if required, it was presented primarily online with optional
daily drop-in sessions. �is made it possible for students to continue
in existing employment and enabled employers to begin the work
element of the apprenticeship programme earlier if they wished.
�e test and nature of the course enabled a number of individualised
learning pathways to be supported across the cohort.

Students took the same test at the end of the Summer School,
and all students’ performance improved. A focus group session
was held at the end of the course with students who had followed
di�erent learning pathways and they were very positive about the
learning experience.

While the course presented here addresses a speci�c need identi-
�ed in the design of a degree apprenticeship programme, the more
general issue of students entering a programming course with dif-
ferent levels of prior experience, and then proceeding through the
course at di�erent speeds, will be familiar to any programming
instructor.

2 SELECTION - APTITUDE TESTS
A ba�ery of aptitude tests was compiled from recognised sources
to assess both problem solving and programming skills. All appren-
tices selected by companies for the programme completed the tests,
which is now described.DOI: 10.1145/3372356.3372370

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3372356.3372370&domain=pdf&date_stamp=2020-01-10

Computing Education Practice, January 2020, Durham, UK Somerville, et al.

Course Problem Solving (30) Programming Test (9)
1P 21.25 (70.83%) 6.58 (73.11%)
1CT 18.30 (46.22%) 4.16 (61.00%)
Total 20.81 (69.38%) σ = 4.67 5.91(65.63%) σ = 2.12

Figure 1: Aptitude Test mean results for �rst year students

2.1 Problem Solving
�e duration of the problem-solving test was 40 minutes with 30
questions - 20 questions on logical reasoning and ten on spatial
skills. �is test was not used to determine the need for the Summer
School, but to help identify students that may require additional
support during their studies. It is included here, because, as will be
shown later in the paper, the Summer School appears to have had
an e�ect on problem solving skills as well as programming.

2.1.1 Logical Reasoning. �e Logical Reasoning measures the
ability to identify pa�erns and sequences in obscured contexts,
demonstrating logical thinking and cognitive �exibility to avoid
distractors and deliberate contextual misleading elements. Logical
reasoning has been shown to be a predictor of academic success
by multiple researchers [9], where a correlation has been observed
between logical reasoning and grades in an introductory computing
course.

2.1.2 Spatial Skills. �e Spatial skills aspect of the problem-
solving test represents the ability to identify, generate and manipu-
late structures internally, such as the ability to visualise all the sides
of a cube when they cannot all be visible, or to internally rotate a
3D object [10]. Spatial skills have been connected with success in
Science Technology Engineering and Maths (STEM) for decades [5],
and in recent years evidence has grown for a speci�c relationship
with computing ability. Spatial skills are associated with many fac-
tors of computing success: grades, academic a�ainment and even
code tracing and comprehension.

2.2 Programming Test
Students with prior programming ability tend to fare far be�er than
their peers without, in an academic context [2]. Results from this
section helped us to identify gaps in the student’s understanding.

�e test used to measure programming ability is the SCS1 [4]:
a language independent, well-validated measure of fundamental
concepts expected to be covered in an introductory computing
course (i.e. the level of experience one would typically expect from
someone who is competent in a programming language). A reduced
version of this test with nine questions [6] was taken in 20 minutes.

2.3 Benchmarking the Test
In order to benchmark the test results, a sample of 30 �rst year un-
dergraduate students on our traditional campus-based programme
were selected who had completed a two semester Python course.
In semester one these students are split into two groups, those who
already have some programming experience (1P course) and those
who do not (1CT course), please see �gure 1.

3 INDIVIDUALISING LEARNING PATHWAYS
Twenty nine apprentices started the Summer School, three passed
the programming test, but decided to a�end anyway. �e course
was designed to be run over eight weeks, seven apprentices started
two weeks before the end. To allow each apprentice to learn at
their own pace we created several learning pathways, the bene�ts
of individual learning pathways have been demonstrated [7].

3.1 Programming Constructs
Similar to other programming courses a programming competency
model was used [8]. �e basic programming competency constructs
the apprentices learned are as follows:

• Declaring, Manipulating and Displaying Variables:
Basic assignment and printing of variables.

• Conditional Logic: If, elif and else statements.
• Data Storage: Dictionaries, lists, arrays and tuples.
• Iterations: While and for loops.
• Python File Management: Reading and writing of �les.
• Methods: Function and method calls.
• Exceptions: Exception handling.

For each of the above competencies, the programming constructs,
had an initial test. If the apprentice got 100% they would move on to
the �nal test. If the apprentice was above 80% they had the option to
move to the �nal test or look at the lessons. �e apprentices that did
the lessons used Jupyter Notebooks to learn about the competency
and this enabled them to experience writing and executing Python.
�e apprentices then had the option to do practice quizzes before
they took the �nal test. Once the apprentice got above 80% in the
�nal test they moved to the next competency. Some apprentices
chose to jump between the lessons to help their understanding.

One apprentice highlighted they found the initial tests helpful to
gauge how much e�ort was required for the competency, so spent
longer on the lessons and doing the practice quizzes. �e quizzes
focused on learning to read code [3]. Only a few questions in each
competency had missing code which had to be completed to give
experience of reading and writing Python.

Below are the di�erent learning pathways for each competency:

• High prior knowledge and high confidence: Initial
quiz and �nal quiz.

• High prior knowledge and low confidence: Initial
quiz, practice quiz and �nal quiz .

• Medium prior knowledge and high confidence: Initial
quiz, lesson sections for mistakes and �nal quiz.

• Medium prior knowledge and low confidence: Initial
quiz, lesson sections for mistakes, practice quiz and �nal
quiz.

• Low to no prior knowledge and time: Initial quiz,
lessons, practice and �nal quiz.

• Low to no prior knowledge and low time: Initial
quiz, lessons and �nal quiz.

• Low to no prior knowledge and inquisitive: Initial
quiz, lessons, future lessons, previous lessons, practice and
�nal quiz.

• No prior knowledge and very low time: Lessons and
�nal quiz.

Somerville, et al. Computing Education Practice, January 2020, Durham, UK

As the Summer School progressed the apprentices used the face
to face drop in sessions to collaborate with each other and with
their team members in their workplaces; this collaboration element
signi�cantly enhanced the learning pathways.

3.2 Reading Solutions
It was felt that all apprentices would gain from reading programs
[3]. A Playing Cards, Snap and Black Jack Python �les were created
for the apprentices to read. �ere were optional lessons explaining
the Python �les in more depth. �e apprentice had a �nal test to
check con�rm their understanding of the Python �les.

�e apprentices used the following learning pathways:
• High prior knowledge and high confidence: Read

Python �les and completed the �nal test.
• Low prior knowledge or low confidence: Read Python

�les, completed lessons and completed the �nal test.

3.3 Writing Programs
�e Writing Programs competency had a number of mandatory
problems to solve, which increased in di�culty. �ere were a
number of optional simpler problems using the same programming
constructs which they could solve �st.

�e apprentices used the following learning pathways:
• High prior knowledge and high confidence: Manda-

tory problems.
• Low prior knowledge or low confidence: Optional

problems and mandatory problems.

4 SUMMER SCHOOL EVALUATIONS
Twenty-seven out of the twenty-nine apprentices have fully com-
pleted the course. One has not completed due to personal reasons
and the other invalidated their results.

4.1 Aptitude Tests
As shown in Figure 2, for all apprentices who a�ended the Summer
School, the problem solving average score before was similar to
the undergraduate �rst year ICT (limited or no prior knowledge)
average score (18 out of 30). �e problem solving scores a�er the
Summer School were marginally below the 1P (prior knowledge)
�rst year students. �e increase could be due to the apprentices
si�ing the test a second time, however it was noted for an apprentice
that almost doubled their problem solving score that they had not
completed the test the �rst time.

As shown in Figure 3, the increased improvement in the pro-
gramming tests for apprentices who required the Summer School
was sizeable at 31%. Although no re-testing was done to see if there
was an e�ect of repeating the test, it was felt this would be small,
since it was only ten weeks since they last sat the programming
test. �e apprentices did not see the correct answers or their score
and the questions were also reasonably complex, so di�cult to
remember. �e apprentices who required the Summer School had
an average above the 1CT score of 4.16, but less then the 1P score
of 6.58.

�e average for the apprentices who did not require the Summer
School was 7.5, but this is a very tiny sample. �ese apprentices all

Test Before A�er Increase
Programming
Test (9)

2.61 (28.97%)
σ = 1.71

5.26 (58.48%)
σ = 1.79

2.59 (28.81%)
σ = 1.62

Problem Solving
(30)

18.21 (60.71%)
σ = 4.30

20.72 (69.07%)
σ = 3.73

3.39 (11.30%)
σ = 3.43

Logical Reasoning
(20)

13.21 (66.07%)
σ = 2.71

14.52 (72.60%)
σ = 2.49

1.48 (7.40%)
σ = 2.77

Spatial Skills (10) 5.00 (50.00%)
σ = 2.64

6.20 (62.00%)
σ = 2.31

1.22 (12.22%)
σ = 2.48

Figure 2: Aptitude Tests mean results for all apprentices

Test Before A�er Increase
Programming
Test (9)

2.20 (24.44%)
σ = 1.12

5.13 (56.94%)
σ = 1.70

2.75 (30.56%)
σ = 1.65

Problem Solving
(30)

18.20 (60.67%)
σ = 4.33

20.68 (68.94%)
σ = 3.97

2.64 (8.79%)
σ = 3.53

Logical Reasoning
(20)

13.28 (66.40%)
σ = 2.73

14.63 (73.13%)
σ = 2.60

1.45 (7.23%)
σ = 2.78

Spatial Skills (10) 4.92 (49.20%)
σ = 2.72

6.38 (63.75%)
σ = 2.66

1.53 (15.25%)
σ = 2.36

Figure 3: Aptitude Test mean results for apprentices requir-
ing the Summer School

No Learning Style Prior Coding Programming Now
1 Mainly Online Good Slightly Polished
2 Mainly Online None Signi�cantly Be�er
3 Drop in plus 70% online None Signi�cantly Be�er
4 Drop in plus 70% online Limited Signi�cantly Be�er
5 Drop in plus 70% online None Signi�cantly Be�er
6 Drop in only Good Improved quite a bit
7 Some drop and half on-

line
Limited Signi�cantly Be�er

8 Online for two weeks Very Good Slightly Polished
9 Some drop for two

weeks
Limited Signi�cantly Be�er

10 Mainly online Limited De�nitely Improved

Figure 4: Attendance and knowledge levels of focus group

improved in the programming test, although only minimally since
they already had a relatively high score.

No individual who has re-sat the programming test got a lower
score, all improved. Only three students got one or two marks less
for the problem solving, the rest improved.

4.2 Focus Group
Ten participants from a total of twenty-nine Summer School at-
tendees were selected for the focus group. �ese were speci�cally
chosen to represent a broad range of knowledge and experience of
those who a�ended the course, as shown in Figure 4.

Computing Education Practice, January 2020, Durham, UK Somerville, et al.

Some students had a negative preconception about the Summer
School using Python when they knew they would be coding in Java
in their new job, although they felt they bene�ted from learning
an additional programming language and actually liked Python
by the end of the Summer School. Other students asked to submit
the wri�en code in a language other than Python (which was al-
lowed). �ose students with no prior programming felt that Python
restricted the syntax and so made it easier to learn to program.

One student with no prior programming jumped between compe-
tencies in both directions to help give context. With other students
re-visiting prior lessons and questions. Some felt they just learnt
the answers to the practice questions without fully understanding
the solution.�e use of Jupyter Notebooks was felt to aid learning,
allowing apprentices to write code, although some felt there was a
steep gap from the Jupyter Notebook lessons to the �nal quiz for
some competencies.

�e apprentices felt that the eight week time period for the
Summer School was a good length. �ey also liked the lunch time
drop in sessions from 12pm till 2pm. �is allowed a few to work on
problems in the morning, get help at lunch time and then work on
the course again in the a�ernoon. It was noted by some apprentices
who had started work that they were restricted and asked to ”do
Uni work in your own time”. �ey also mentioned that going back
to work a�er the drop in session gave their manager con�dence
that they were taking part in the school. A number of apprentices
liked the online nature of the course as they felt that they could
lead the learning, but they appreciated the help and explanations
that they received at the face-to-face drop in sessions.

One apprentice said that they got a ”big high” when they com-
pleted and fully understood their �rst program, whilst another
liked improving on their solutions during the writing programs
section. A number of apprentices felt they now have con�dence
in programming, even when looking at Java code. �ey now feel
they understand code, even Java and were happy to ”but in” in the
workplace.

Some apprentices felt the Summer School helped them integrate
with their new team, when they asked teammates for help with
problems they faced during the course. One student noticed that
they were receiving more help from a fellow student with collab-
orative work at the start of the Summer School, but by the end
they felt they were collaborating equally. �e apprentices felt they
bene�ted from the chance to collaborate with their classmates and
viewed the drop in sessions as a welcome opportunity to meet and
discuss their work.

5 IMPROVEMENTS
Following the Summer School course survey and focus group a
number of improvements were identi�ed.

• Parsons Puzzle: Apprentices did not like these questions
and the forma�ing indentation was lost within Moodle.

• Writing Programs after a Competency: Although it is
recognised that learning to read programs �rst is important,
the apprentices requested a mix. Adding a wri�en program
at the end of some competencies will help give some early
successes. It was also suggested that the wri�en program
could be expanded as more competencies are completed.

• Test Cases: To give apprentices early feedback on writ-
ten programs it was suggested test cases should be pro-
vided. �is would complement the Test Driven Develop-
ment (TDD) elements covered in the degree programme. It
would also help to reduce the sta� burden of grading writ-
ten programs. One down side of this approach is it might
dictate what methods to create and the overall approach of
the solution. Apprentices did highlight they liked solving
a problem in their own way.

• A variety of prior coding templates: To help ap-
prentices with the Writing Program problems, a variety of
levels of coding templates could be provide to give appren-
tices a helping start.

• Add more difficulty to lessons in Jupyter Notebooks:
It was highlighted that for some competencies there was a
large jump from the level of the lessons in Jupyter Note-
books to the �nal quiz. �e proposal is to add more ad-
vanced lessons to the Jupyter Notebooks, bringing the
apprentices up to the level of the �nal quiz.

• Further reading: One apprentice asked for recommended
reading on computing history and other topics.

6 CONCLUSION
�e apprentices of all levels of coding experience liked the approach
of the individual learning pathways. �e Summer School improved
the apprentices understanding of programming constructs and
helped them gain con�dence. It also provided the apprentices with
an excellent opportunity for collaborating with both their fellow
classmates and their workplace teams.

REFERENCES
[1] Ma�hew Barr and Jack Parkinson. 2019. Developing a Work-based So�ware

Engineering Degree in Collaboration with Industry. UKICER Proceedings of the
1st UK Ireland Computing Education Research Conference 9 (2019).

[2] Finland Helsinki. 2000. Does it help to have some programming experience
before beginning a computing degree program? ACM SIGCSE Bulletin 32, 3
(2000), 25–28.

[3] Phil Robbins Raymond Lister Mike Lopez, Jacqueline Whalley. 2008. Relation-
ships between reading, tracing and writing skills in introductory programming.
ICER ’08 Proceedings of the Fourth international Workshop on Computing Education
Research (2008), 101–112.

[4] Mark Guzdial Shelly Engleman Miranda C. Parker. 2016. Replication, Validation,
and Use of a Language Independent CS1 Knowledge Assessment. (English). ICER
’16 Proceedings of the 2016 ACM Conference on International Computing Education
Research (2016), 93–101. DOI:h�p://dx.doi.org/10.1145/2960310.2960316

[5] Jack Parkinson and �intin Cu�s. 2018. Investigating the Relationship Between
Spatial Skills and Computer Science. ICER ’18 Proceedings of the 2018 ACM
Conference on International Computing Education Research (2018).

[6] Jonathan Gratch Mohsen Dorodchi Ryan Bockmon, Stephen Cooper. 2019.
(Re)Validating Cognitive Introductory Computing Instruments. (English). SIGCSE
’19 Proceedings of the 50th ACM Technical Symposium on Computer Science Edu-
cation (2019), 552–557. DOI:h�p://dx.doi.org/10.1145/3287324.3287372

[7] Dechawut Wanichsan Parames Laosinchai Sasithorn Chookaew, Patcharin Pan-
jaburee. 2014. A Personalized E-Learning Environment to Promote Students�
Conceptual Learning on Basic Computer Programming. Social and Behavioral
Sciences 116 (2014).

[8] Carsten Schulte. 2008. Block Model �� an Educational Model of Program Com-
prehension as a Tool for a Scholarly Approach to Teaching. Proceeding of the
Fourth international Workshop on Computing Education Research (2008), 149–160.

[9] Ricky Baker E A. Unger. 1983. A predictor for success in an introductory
programming class based upon abstract reasoning development. (English). ACM
SIGCSE Bulletin - Proceedings of the 14th SIGCSE technical symposium on Computer
science education 15, 1 (1983), 154–158. DOI:h�p://dx.doi.org/10.1145/952978.
801037

[10] So Yoon Yoon. 2011. Psychometric properties of the Revised Purdue Spatial Visual-
ization Tests: Visualization of Rotations (the Revised PSVT:R). Ph.D. Dissertation.

http://dx.doi.org/10.1145/2960310.2960316
http://dx.doi.org/10.1145/3287324.3287372
http://dx.doi.org/10.1145/952978.801037
http://dx.doi.org/10.1145/952978.801037

Somerville, et al. Computing Education Practice, January 2020, Durham, UK

Purdue University.

	Abstract
	1 Introduction
	2 Selection - Aptitude Tests
	2.1 Problem Solving
	2.2 Programming Test
	2.3 Benchmarking the Test

	3 Individualising Learning Pathways
	3.1 Programming Constructs
	3.2 Reading Solutions
	3.3 Writing Programs

	4 Summer School Evaluations
	4.1 Aptitude Tests
	4.2 Focus Group

	5 Improvements
	6 Conclusion
	References

